Summer Clouds moderators
03/11/2017 at 08:58-
There are 2 cases :
+ \(2x-1\ge0\Leftrightarrow x\ge\dfrac{1}{2}\)
\(2x-1>x+3\Leftrightarrow2x-x>3+1\Leftrightarrow x>4\)
+ \(2x-1< 0\Leftrightarrow x< \dfrac{1}{2}\)
\(1-2x< x+3\Leftrightarrow1-3< x+2x\Leftrightarrow3x>-2\Leftrightarrow x>-\dfrac{2}{3}\)
So, \(x>4\) or \(-\dfrac{2}{3}< x< \dfrac{1}{2}\)
Selected by MathYouLike -
Phạm Tuấn Đạt 04/11/2017 at 23:38
+ 2x−1≥0⇔x≥122x−1≥0⇔x≥12
2x−1>x+3⇔2x−x>3+1⇔x>42x−1>x+3⇔2x−x>3+1⇔x>4
+ 2x−1<0⇔x<122x−1<0⇔x<12
1−2x<x+3⇔1−3<x+2x⇔3x>−2⇔x>−231−2x<x+3⇔1−3<x+2x⇔3x>−2⇔x>−23
So, x>4x>4 or −23<x<12