MathYouLike MathYouLike
  • Toggle menubar
  • Toggle fullscreen
  • Toggle Search
  •    Sign up
  • QUESTIONS
  • TAGS
  • USERS
  • BADGES
  • UNANSWERD
  • ASK A QUESTION
  • BLOG
...

Detecvite Conan

02/11/2017 at 19:45
Answers
1
Follow

Calculate A = 1.2 + 2.3 + 3.4 + ... + n. (N + 1)




    List of answers
  • ...
    Dao Trong Luan Coordinator 03/11/2017 at 12:02

    \(A=1\cdot2+2\cdot3+3\cdot4+...+n\left(n+1\right)\)

    \(3A=1\cdot2\cdot3+2\cdot3\cdot3+3\cdot4\cdot3+...+3n\left(n+1\right)\)

    \(=1\cdot2\cdot\left(3-0\right)+2\cdot3\cdot\left(4-1\right)+3\cdot4\cdot\left(5-2\right)+...+n\left(n+1\right)\left[\left(n+2\right)-\left(n-1\right)\right]\)\(=1\cdot2\cdot3-0\cdot1\cdot2+2\cdot3\cdot4-1\cdot2\cdot3+3\cdot4\cdot5-2\cdot3\cdot4+...+n\left(n+1\right)\left(n+2\right)-\left(n-1\right)n\left(n+1\right)\)\(=n\left(n+1\right)\left(n+2\right)\)

    \(\Rightarrow A=\dfrac{n\left(n+1\right)\left(n+2\right)}{3}\)

    Selected by MathYouLike

Post your answer

Please help Detecvite Conan to solve this problem!



Weekly ranking


© HCEM 10.1.29.225
Crafted with by HCEM