MathYouLike MathYouLike
  • Toggle menubar
  • Toggle fullscreen
  • Toggle Search
  •    Sign up
  • QUESTIONS
  • TAGS
  • USERS
  • BADGES
  • UNANSWERD
  • ASK A QUESTION
  • BLOG
...

Cristiano Ronaldo

19/03/2017 at 11:32
Answers
2
Follow

Evaluate \(\dfrac{1}{1+2}+\dfrac{1}{1+2+3}+\dfrac{1}{1+2+3+4}+..+\dfrac{1}{1+2+3+...+50}\)


rational numbers


    List of answers
  • ...
    FA KAKALOTS 03/02/2018 at 12:43

    Consider the following expression :

    11+2+3+..+n=1n(n+1)2=2n(n+1)

    So we have :

    11+2+11+2+3+11+2+3+4+...+11+2+3+4+...+50

    =22.3+23.4+24.5+...+250.51

    =2(12.3+13.4+14.5+...+150.51)

    =2(12−13+13−14+14−15+...+150−151)

    =2(12−151)=1−251=4951

  • ...
    Phan Thanh Tinh Coordinator 23/03/2017 at 17:53

    Consider the following expression :

    \(\dfrac{1}{1+2+3+..+n}=\dfrac{1}{\dfrac{n\left(n+1\right)}{2}}=\dfrac{2}{n\left(n+1\right)}\)

    So we have :

    \(\dfrac{1}{1+2}+\dfrac{1}{1+2+3}+\dfrac{1}{1+2+3+4}+...+\dfrac{1}{1+2+3+4+...+50}\)\(=\dfrac{2}{2.3}+\dfrac{2}{3.4}+\dfrac{2}{4.5}+...+\dfrac{2}{50.51}\)

    \(=2\left(\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+...+\dfrac{1}{50.51}\right)\)

    \(=2\left(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{50}-\dfrac{1}{51}\right)\)

    \(=2\left(\dfrac{1}{2}-\dfrac{1}{51}\right)=1-\dfrac{2}{51}=\dfrac{49}{51}\)


Post your answer

Please help Cristiano Ronaldo to solve this problem!



Weekly ranking


© HCEM 10.1.29.225
Crafted with by HCEM