Cristiano Ronaldo
19/03/2017 at 11:32-
FA KAKALOTS 03/02/2018 at 12:43
Consider the following expression :
11+2+3+..+n=1n(n+1)2=2n(n+1)
So we have :
11+2+11+2+3+11+2+3+4+...+11+2+3+4+...+50
=22.3+23.4+24.5+...+250.51
=2(12.3+13.4+14.5+...+150.51)
=2(12−13+13−14+14−15+...+150−151)
=2(12−151)=1−251=4951
-
Consider the following expression :
\(\dfrac{1}{1+2+3+..+n}=\dfrac{1}{\dfrac{n\left(n+1\right)}{2}}=\dfrac{2}{n\left(n+1\right)}\)
So we have :
\(\dfrac{1}{1+2}+\dfrac{1}{1+2+3}+\dfrac{1}{1+2+3+4}+...+\dfrac{1}{1+2+3+4+...+50}\)\(=\dfrac{2}{2.3}+\dfrac{2}{3.4}+\dfrac{2}{4.5}+...+\dfrac{2}{50.51}\)
\(=2\left(\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+...+\dfrac{1}{50.51}\right)\)
\(=2\left(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{50}-\dfrac{1}{51}\right)\)
\(=2\left(\dfrac{1}{2}-\dfrac{1}{51}\right)=1-\dfrac{2}{51}=\dfrac{49}{51}\)