MathYouLike MathYouLike
  • Toggle menubar
  • Toggle fullscreen
  • Toggle Search
  •    Sign up
  • QUESTIONS
  • TAGS
  • USERS
  • BADGES
  • UNANSWERD
  • ASK A QUESTION
  • BLOG
...

Cristiano Ronaldo

19/03/2017 at 10:56
Answers
2
Follow

Evaluate \(\dfrac{1}{2}+\left(\dfrac{1}{3}+\dfrac{2}{3}\right)+\left(\dfrac{1}{4}+\dfrac{2}{4}+\dfrac{3}{4}\right)+\left(\dfrac{1}{5}+\dfrac{2}{5}+\dfrac{3}{5}+\dfrac{4}{5}\right)+...+\left(\dfrac{1}{100}+\dfrac{2}{100}+\dfrac{3}{100}+...+\dfrac{99}{100}\right)\)


rational numbers


    List of answers
  • ...
    FA KAKALOTS 03/02/2018 at 12:44

    Consider the following expression :

    1n+1+2n+1+3n+1+...+nn+1

    =n(n+1)2n+1=n2

    So we have :

    12+(13+23)+(14+24+34)+(15+25+35+45)+...+(1100+2100+3100+...+99100)

    =12+22+32+42+...+992

    =99.10022=99.1004=99.25=2475

  • ...
    Phan Thanh Tinh Coordinator 23/03/2017 at 18:01

    Consider the following expression :

    \(\dfrac{1}{n+1}+\dfrac{2}{n+1}+\dfrac{3}{n+1}+...+\dfrac{n}{n+1}\)

    \(=\dfrac{\dfrac{n\left(n+1\right)}{2}}{n+1}=\dfrac{n}{2}\)

    So we have :

    \(\dfrac{1}{2}+\left(\dfrac{1}{3}+\dfrac{2}{3}\right)+\left(\dfrac{1}{4}+\dfrac{2}{4}+\dfrac{3}{4}\right)+\left(\dfrac{1}{5}+\dfrac{2}{5}+\dfrac{3}{5}+\dfrac{4}{5}\right)+...+\left(\dfrac{1}{100}+\dfrac{2}{100}+\dfrac{3}{100}+...+\dfrac{99}{100}\right)\)

    \(=\dfrac{1}{2}+\dfrac{2}{2}+\dfrac{3}{2}+\dfrac{4}{2}+...+\dfrac{99}{2}\)

    \(=\dfrac{\dfrac{99.100}{2}}{2}=\dfrac{99.100}{4}=99.25=2475\)


Post your answer

Please help Cristiano Ronaldo to solve this problem!



Weekly ranking


© HCEM 10.1.29.225
Crafted with by HCEM