Cristiano Ronaldo
19/03/2017 at 10:56-
FA KAKALOTS 03/02/2018 at 12:44
Consider the following expression :
1n+1+2n+1+3n+1+...+nn+1
=n(n+1)2n+1=n2
So we have :
12+(13+23)+(14+24+34)+(15+25+35+45)+...+(1100+2100+3100+...+99100)
=12+22+32+42+...+992
=99.10022=99.1004=99.25=2475
-
Consider the following expression :
\(\dfrac{1}{n+1}+\dfrac{2}{n+1}+\dfrac{3}{n+1}+...+\dfrac{n}{n+1}\)
\(=\dfrac{\dfrac{n\left(n+1\right)}{2}}{n+1}=\dfrac{n}{2}\)
So we have :
\(\dfrac{1}{2}+\left(\dfrac{1}{3}+\dfrac{2}{3}\right)+\left(\dfrac{1}{4}+\dfrac{2}{4}+\dfrac{3}{4}\right)+\left(\dfrac{1}{5}+\dfrac{2}{5}+\dfrac{3}{5}+\dfrac{4}{5}\right)+...+\left(\dfrac{1}{100}+\dfrac{2}{100}+\dfrac{3}{100}+...+\dfrac{99}{100}\right)\)
\(=\dfrac{1}{2}+\dfrac{2}{2}+\dfrac{3}{2}+\dfrac{4}{2}+...+\dfrac{99}{2}\)
\(=\dfrac{\dfrac{99.100}{2}}{2}=\dfrac{99.100}{4}=99.25=2475\)