Summer Clouds moderators
13/10/2017 at 10:08-
We have \(7^{2017}=\left(7^4\right)^{504}\cdot7\)
We have \(7^4\equiv1\left(mod12\right)\)
\(\Rightarrow\left(7^4\right)^{504}\equiv7^{2016}\equiv1\left(mod12\right)\)
\(\Rightarrow7^{2017}\equiv1\cdot7\equiv7\left(mod12\right)\)
So the remainder is 7.
Selected by MathYouLike