MathYouLike MathYouLike
  • Toggle menubar
  • Toggle fullscreen
  • Toggle Search
  •    Sign up
  • QUESTIONS
  • TAGS
  • USERS
  • BADGES
  • UNANSWERD
  • ASK A QUESTION
  • BLOG
...

Summer Clouds moderators

13/10/2017 at 10:05
Answers
2
Follow

Find the largest positive integer $x$ such that $\frac {(x+1)^2} {x+23}$ is an integer.




    List of answers
  • ...
    Phan Thanh Tinh Coordinator 13/10/2017 at 11:30

    We have :

    \(\left(x+1\right)^2=x^2+2x+1=x^2-529+2x+530\)

    \(=\left(x-23\right)\left(x+23\right)+2\left(x+23\right)+484\)

    \(=\left(x-21\right)\left(x+23\right)+484\)

    Since \(\left(x+1\right)^2⋮x+23\), \(484⋮x+23\)

    So, the largest value of x + 23 is 484 and the answer is 461

    Selected by MathYouLike
  • ...
    ForOver Coordinator 13/10/2017 at 11:34

    Call : \(\dfrac{\left(n+1\right)^2}{n+23}=Q_{\left(n\right)}+\dfrac{R}{n+23}\)

    n + 23 = 0 => n = -23.

    \(R=\left(-23+1\right)^2=\left(-22\right)^2=484\)

    \(\Rightarrow\dfrac{\left(n+1\right)^2}{n+23}=Q_{\left(n\right)}+\dfrac{484}{n+3}\in Z\)

    \(\Rightarrow n+23\inƯ_{\left(484\right)}=\left\{\pm1;\pm2;\pm4;\pm11;\pm22;\mp44;\pm121;\pm242;\pm484\right\}\)

    \(\Rightarrow n+23_{MAX}=484\Rightarrow n=484-23=461\)

    Answer : 461.


Post your answer

Please help Summer Clouds to solve this problem!



Weekly ranking


© HCEM 10.1.29.225
Crafted with by HCEM