MathYouLike MathYouLike
  • Toggle menubar
  • Toggle fullscreen
  • Toggle Search
  •    Sign up
  • QUESTIONS
  • TAGS
  • USERS
  • BADGES
  • UNANSWERD
  • ASK A QUESTION
  • BLOG
...

Cristiano Ronaldo

19/03/2017 at 10:54
Answers
3
Follow

What is the of n in \(\dfrac{1}{2}+\dfrac{1}{6}+\dfrac{1}{12}+...+\dfrac{1}{n\left(n+1\right)}=\dfrac{1999}{2000}?\)


rational numbers


    List of answers
  • ...
    Nguyễn Kim Ngưu 19/03/2017 at 11:00

    \(A=\dfrac{1}{2}+\dfrac{1}{6}+\dfrac{1}{12}+...+\dfrac{1}{n\left(n+1\right)}=\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{n.\left(n+1\right)}\)

    \(A=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+..+\dfrac{1}{n}-\dfrac{1}{n-1}\)

    \(A=1-\dfrac{1}{n+1}=\dfrac{n}{n+1}=\dfrac{1999}{2000}\Rightarrow n.2000=\left(n+1\right).1999\)

    \(\Leftrightarrow1999n+n=1999n+1999\Rightarrow n=1999\)

    Cristiano Ronaldo selected this answer.
  • ...
    Nguyệt Nguyệt 19/03/2017 at 12:14

    We have :

    \(\dfrac{1}{2}+\dfrac{1}{6}+\dfrac{1}{12}+...+\dfrac{1}{n.\left(n+1\right)}=\dfrac{1999}{2000}\)
    = \(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{n.\left(n+1\right)}=\dfrac{1999}{2000}\)
    = \(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{n}-\dfrac{1}{n+1}=\dfrac{1999}{2000}\)
    =  \(1-\dfrac{1}{n+1}=\dfrac{1999}{2000}\)
    = > \(\dfrac{1}{n+1}=1-\dfrac{1999}{2000}\)
    <=> \(\dfrac{1}{n+1}=\dfrac{1}{2000}\)
    => n + 1 = 2000
    n = 2000 - 1
    n = 1999
    Vậy n = 1999.

  • ...
    FA KAKALOTS 03/02/2018 at 12:44

    A=12+16+112+...+1n(n+1)=11.2+12.3+...+1n.(n+1)

    A=1−12+12−13+..+1n−1n−1

    A=1−1n+1=nn+1=19992000⇒n.2000=(n+1).1999

    ⇔1999n+n=1999n+1999⇒n=1999

    We have :

    12+16+112+...+1n.(n+1)=19992000


    = 11.2+12.3+13.4+...+1n.(n+1)=19992000
    = 1−12+12−13+13−14+...+1n−1n+1=19992000
    =  1−1n+1=19992000
    = > 1n+1=1−19992000
    <=> 1n+1=12000
    => n + 1 = 2000
    n = 2000 - 1
    n = 1999
    Vậy n = 1999.


Post your answer

Please help Cristiano Ronaldo to solve this problem!



Weekly ranking


© HCEM 10.1.29.225
Crafted with by HCEM