MathYouLike MathYouLike
  • Toggle menubar
  • Toggle fullscreen
  • Toggle Search
  •    Sign up
  • QUESTIONS
  • TAGS
  • USERS
  • BADGES
  • UNANSWERD
  • ASK A QUESTION
  • BLOG
...

Summer Clouds moderators

10/10/2017 at 08:44
Answers
1
Follow

In trapezoid ABCD with AB parallel to CD, the diagonals AC and BD
intersect at E. If the area of triangle ABE is 50 square units, and the
area of triangle ADE is 20 square units, what is the area of trapezoid ABCD?
 




    List of answers
  • ...
    Phan Thanh Tinh Coordinator 10/10/2017 at 11:08

    A B C D E H K M N

    Draw \(AH,CK\perp BD;AM,BN\perp CD\)

    \(\dfrac{S_{ABE}}{S_{ADE}}=\dfrac{AH.BE:2}{AH.DE:2}=\dfrac{BE}{DE}\Rightarrow\dfrac{BE}{DE}=\dfrac{50}{20}=\dfrac{5}{2}\)

    \(\Rightarrow\dfrac{S_{BEC}}{S_{DEC}}=\dfrac{BE.CK:2}{DE.CK:2}=\dfrac{BE}{DE}=\dfrac{5}{2}\)

    \(\dfrac{S_{ADC}}{S_{BDC}}=\dfrac{AM.DC:2}{BN.DC:2}=1\Rightarrow S_{ADE}+S_{DEC}=S_{BEC}+S_{DEC}\)

    \(\Rightarrow S_{ADE}=S_{BEC}=20\left(units^2\right)\)

    \(\Rightarrow S_{DEC}=20:\dfrac{5}{2}=8\left(units^2\right)\)

    So, the answer is : \(20+50+20+8=98\left(units^2\right)\)

    Selected by MathYouLike

Post your answer

Please help Summer Clouds to solve this problem!



Weekly ranking


© HCEM 10.1.29.225
Crafted with by HCEM