Phan Hoang Paul
06/10/2017 at 20:51-
\(P=\sqrt{x+2\sqrt{x-1}}+\sqrt{x-2\sqrt{x-1}}\)
Condition : \(x\ge1\)
a) We have \(x+2\sqrt{x-1}=\left(x-1\right)+2+1\sqrt{x-1}+1=\left(\sqrt{x-1}+1\right)^2\)
So P = \(\sqrt{\left(1+\sqrt{x-1}\right)^2}+\sqrt{\left(1-\sqrt{x-1}\right)^2}\)
\(\Rightarrow\left|1+\sqrt{x-1}\right|+\left|1-\sqrt{x-1}\right|\)
+ With \(1-\sqrt{x-1}\ge0\Rightarrow x\le2:\)
\(P=1+\sqrt{x-1}+1-\sqrt{x-1}=2\)
+ With \(1-\sqrt{x-1}< 0\Rightarrow x>2:\)
\(P=1+\sqrt{x-1}+\sqrt{x-1}-1=2\sqrt{x-1}\)
Sum up : \(\left[{}\begin{matrix}1\le x\le2\Rightarrow P=2\\x>2\Rightarrow P=2\sqrt{x-1}\end{matrix}\right.\)
b) We have inequality \(\left|A\right|+\left|B\right|\ge\left|A+B\right|\)
So : \(P=\left|1+\sqrt{x-1}\right|+\left|1-\sqrt{x-1}\right|\ge\left|\sqrt{\left(1-\sqrt{x-1}\right)+\left(1-\sqrt{x-1}\right)}\right|\)
\(\Rightarrow P\ge2\Leftrightarrow1\le x\le2\)
So Pmin = 2 when \(1\le x\le2\).
Selected by MathYouLike