MathYouLike MathYouLike
  • Toggle menubar
  • Toggle fullscreen
  • Toggle Search
  •    Sign up
  • QUESTIONS
  • TAGS
  • USERS
  • BADGES
  • UNANSWERD
  • ASK A QUESTION
  • BLOG
...

Phan Hoang Paul

06/10/2017 at 20:51
Answers
1
Follow

Give P = \(\sqrt{x+2\sqrt{x-1}}+\sqrt{x-2\sqrt{x-1}}\)

a) Compact P ?

b) Find x such that P reach the minimum value ?


Expression


    List of answers
  • ...
    ForOver Coordinator 06/10/2017 at 21:01

    \(P=\sqrt{x+2\sqrt{x-1}}+\sqrt{x-2\sqrt{x-1}}\)

    Condition : \(x\ge1\)

    a) We have \(x+2\sqrt{x-1}=\left(x-1\right)+2+1\sqrt{x-1}+1=\left(\sqrt{x-1}+1\right)^2\)

    So P = \(\sqrt{\left(1+\sqrt{x-1}\right)^2}+\sqrt{\left(1-\sqrt{x-1}\right)^2}\)

    \(\Rightarrow\left|1+\sqrt{x-1}\right|+\left|1-\sqrt{x-1}\right|\)

    + With \(1-\sqrt{x-1}\ge0\Rightarrow x\le2:\)

    \(P=1+\sqrt{x-1}+1-\sqrt{x-1}=2\)

    + With \(1-\sqrt{x-1}< 0\Rightarrow x>2:\)

    \(P=1+\sqrt{x-1}+\sqrt{x-1}-1=2\sqrt{x-1}\)

    Sum up : \(\left[{}\begin{matrix}1\le x\le2\Rightarrow P=2\\x>2\Rightarrow P=2\sqrt{x-1}\end{matrix}\right.\)

    b) We have inequality \(\left|A\right|+\left|B\right|\ge\left|A+B\right|\)

    So : \(P=\left|1+\sqrt{x-1}\right|+\left|1-\sqrt{x-1}\right|\ge\left|\sqrt{\left(1-\sqrt{x-1}\right)+\left(1-\sqrt{x-1}\right)}\right|\)

    \(\Rightarrow P\ge2\Leftrightarrow1\le x\le2\)

    So Pmin = 2 when \(1\le x\le2\).

    Selected by MathYouLike

Post your answer

Please help Phan Hoang Paul to solve this problem!



Weekly ranking


© HCEM 10.1.29.225
Crafted with by HCEM