MathYouLike MathYouLike
  • Toggle menubar
  • Toggle fullscreen
  • Toggle Search
  •    Sign up
  • QUESTIONS
  • TAGS
  • USERS
  • BADGES
  • UNANSWERD
  • ASK A QUESTION
  • BLOG
...

Cristiano Ronaldo

19/03/2017 at 10:46
Answers
2
Follow

It given \(A=\dfrac{3000\times3003}{3001\times3002}\),\(B=\dfrac{3000\times3002}{3001\times3003}\)and \(C=\dfrac{3000\times3001}{3002\times3003}\), then

(A) C < B < A

(B) A < C < B

(C) C < A < B

(D) A < B < C

(E) B < A < C


rational numbers


    List of answers
  • ...
    FA KAKALOTS 03/02/2018 at 12:46

    We have :

    3000.30013002.3003<3000.30023002.3003<3000.30023001.3003<3000.30033001.3003<3000.30033001.3002

    (because 3000.3001 < 3000.3002 < 3000.3003 ;

                   3002.3003 > 3001.3003 > 3001.3002)

    Hence C < B < A

    So the correct answer is (A)

  • ...
    Phan Thanh Tinh Coordinator 23/03/2017 at 18:12

    We have :

    \(\dfrac{3000.3001}{3002.3003}< \dfrac{3000.3002}{3002.3003}< \dfrac{3000.3002}{3001.3003}< \dfrac{3000.3003}{3001.3003}< \dfrac{3000.3003}{3001.3002}\)

    (because 3000.3001 < 3000.3002 < 3000.3003 ;

                   3002.3003 > 3001.3003 > 3001.3002)

    Hence C < B < A

    So the correct answer is (A)


Post your answer

Please help Cristiano Ronaldo to solve this problem!



Weekly ranking


© HCEM 10.1.29.225
Crafted with by HCEM