-
Bùi Thị Mai Anh 31/10/2017 at 06:07
Ta có:
1+\(\dfrac{1}{1+2}\)= 1+\(\dfrac{1}{\dfrac{2\left(2+1\right)}{2}}\)= 1+ \(\dfrac{2}{2.3}\)
1+\(\dfrac{1}{1+2+3}\)= 1+ \(\dfrac{1}{\dfrac{3\left(3+1\right)}{2}}\)= 1+ \(\dfrac{2}{3.4}\)
.
.
.
1+ \(\dfrac{1}{1+2+3+...+997}\)= 1+ \(\dfrac{1}{\dfrac{997\left(997+1\right)}{2}}\)= 1+\(\dfrac{2}{997.998}\)
=> A = 1+\(\dfrac{2}{2.3}\)+1+\(\dfrac{2}{3.4}\)+......+1+\(\dfrac{2}{997.998}\)
= (1+1+....+1) + 2(\(\dfrac{1}{2.3}\)+\(\dfrac{1}{3.4}\)+.....+\(\dfrac{1}{997.998}\))
= 1.996 + 2( \(\dfrac{1}{2}\)-\(\dfrac{1}{3}\)+\(\dfrac{1}{3}\)-\(\dfrac{1}{4}\)+....+\(\dfrac{1}{997}\)-\(\dfrac{1}{998}\))
= 996 + 2(\(\dfrac{1}{2}\)-\(\dfrac{1}{998}\))
Chỗ này bạn tự tính nốt ra nha!!( Chú ý: Dấu chấm chính là dấu nhân đấy không phải dấu phẩy đâu)