MathYouLike MathYouLike
  • Toggle menubar
  • Toggle fullscreen
  • Toggle Search
  •    Sign up
  • QUESTIONS
  • TAGS
  • USERS
  • BADGES
  • UNANSWERD
  • ASK A QUESTION
  • BLOG
...

Summer Clouds moderators

06/10/2017 at 09:03
Answers
2
Follow

Is the number $(2^{58}+1)/5
$ prime or composite?




    List of answers
  • ...
    ForOver Coordinator 06/10/2017 at 14:07

    Factoring : \(2^{58}+1=\left(2^{29}+2^{15}+1\right)\cdot\left(2^{29}-2^{15}+1\right)\)

    Because : \(\left\{{}\begin{matrix}2^{29}+2^{15}+1=536903681\\2^{29}-2^{15}+1=536838145=5\cdot107367629\end{matrix}\right.\)

    So \(2^{58}+1=\left(2^{29}+2^{15}+1\right)\cdot\left(2^{29}-2^{15}+1\right)=536903681\cdot107367629\cdot5\)

    \(\rightarrow\dfrac{2^{58}+1}{5}=\dfrac{536903681\cdot107367629\cdot5}{5}=536903681\cdot107367629\)

    So the number \(\dfrac{2^{58}+1}{5}\) is composite.

    Selected by MathYouLike
  • ...
    Phan Thanh Tinh Coordinator 07/10/2017 at 17:35

    I wish ForOver hadn't written 229 + 215 + 1 and 229 - 215 + 1 as 2 numbers. I'll do it again :

    \(2^{58}+1=\left(2^{29}\right)^2+1^2+2.2^{29}.1-2^{30}=\left(2^{29}+1\right)^2-\left(2^{15}\right)^2\)

    \(=\left(2^{29}-2^{15}+1\right)\left(2^{29}+2^{15}+1\right)\)

    \(2^{29}\equiv\left(2^4\right)^7.2\equiv6.2\equiv2\left(mod10\right)\)

    \(2^{15}\equiv\left(2^4\right)^3.2^3\equiv6.8\equiv8\left(mod10\right)\)

    \(\Rightarrow2^{29}-2^{15}+1\equiv2-8+1\equiv12-8+1\equiv5\left(mod10\right)\)

    \(\Rightarrow2^{29}-2^{15}+1⋮5\)

    So, \(\dfrac{2^{58}+1}{5}\) is the product of 2 natural numbers \(2^{29}+2^{15}+1;\dfrac{2^{29}-2^{15}+1}{5}\). Hence, it's a composite number


Post your answer

Please help Summer Clouds to solve this problem!



Weekly ranking


© HCEM 10.1.29.225
Crafted with by HCEM