MathYouLike MathYouLike
  • Toggle menubar
  • Toggle fullscreen
  • Toggle Search
  •    Sign up
  • QUESTIONS
  • TAGS
  • USERS
  • BADGES
  • UNANSWERD
  • ASK A QUESTION
  • BLOG
...

Summer Clouds moderators

05/10/2017 at 14:47
Answers
2
Follow

Find the last-digits of \(1+9+9^2+.....+9^{50}\).




    List of answers
  • ...
    Dao Trong Luan 05/10/2017 at 15:15

    We have:

    92k = ...1

    92k+1 = ...9

    => A = 1 + 9 + 92 + .... + 950

    = 1 + 9 + ... 1 + .... + ...1

    We easy see A will have sum A have 51 terms.

    and 1 is first and last, so sum A have 26 last-digit terms 1 and 25 last-digit terms 9

    So last-digit is: 26*1 + 25*9 = 251 = ...1

    So last digits of 1 + 9 + ... + 950 is 1

    Selected by MathYouLike
  • ...
    ForOver 05/10/2017 at 15:54

    How about this ?

    \(A=1+9+9^2+...+9^{50}\)

    \(\Rightarrow9A=9+9^2+9^3+...+9^{50}+9^{51}\)

    \(\rightarrow9A-A=8A=\left(9+9^2+9^3+...+9^{50}+9^{51}\right)-\left(1+9+9^2+...+9^{50}\right)\)

    \(\Rightarrow8A=9^{51}-1\Rightarrow A=\dfrac{9^{51}-1}{8}\)

    We find that \(9^{2k},9^{2k+1},...\)always have the last digit is 1 or 9, or we can simply understand that whether 9 has index number is odd => the last digit is 9, and whether 9 has index number is even => the last number is 1.

    \(9^{51}\) has the last digit is 9 (Cause 51 is odd number)

    So : \(A=\dfrac{\overline{B9}-1}{8}=\dfrac{\overline{B8}}{8}=\overline{C1}\)

    Therefore, the last digit of \(1+9+...+9^{50}\) is 1.

    Answer : 1.


Post your answer

Please help Summer Clouds to solve this problem!



Weekly ranking


© HCEM 10.1.29.225
Crafted with by HCEM