trang võ hoàng đoan
05/10/2017 at 08:07-
Dao Trong Luan, you missed the memorable identity : \(\left(b-c\right)^2=\left(b-c\right)\left(b+c\right)\) ?
My solution : \(a+b+c=0\Rightarrow\left(a+b+c\right)^2=0\)
\(\Rightarrow a^2+b^2+c^2+2ab+2bc+2ca=0\)
\(\Rightarrow a^2+b^2+c^2=-2\left(ab+bc+ca\right)\)
Moreover : \(\left(b-c\right)^2+\left(c-a\right)^2+\left(a-b\right)^2\)
\(=b^2-2bc+c^2+c^2-2ac+a^2+a^2-2ab+b^2\)
\(=2\left(a^2+b^2+c^2\right)-2\left(ab+bc+ca\right)\)
\(=2\left(a^2+b^2+c^2\right)+\left(a^2+b^2+c^2\right)=3\left(a^2+b^2+c^2\right)\)
So, the answer is \(\dfrac{1}{3}\)
Selected by MathYouLike -
FA KAKALOTS 09/02/2018 at 22:16
Dao Trong Luan, you missed the memorable identity : (b−c)2=(b−c)(b+c)
?
My solution : a+b+c=0⇒(a+b+c)2=0
⇒a2+b2+c2+2ab+2bc+2ca=0
⇒a2+b2+c2=−2(ab+bc+ca)
Moreover : (b−c)2+(c−a)2+(a−b)2
=b2−2bc+c2+c2−2ac+a2+a2−2ab+b2
=2(a2+b2+c2)−2(ab+bc+ca)
=2(a2+b2+c2)+(a2+b2+c2)=3(a2+b2+c2)
So, the answer is 13
-
Dao Trong Luan 05/10/2017 at 10:19
a+b+c = 0
\(\Rightarrow\left(b-c\right)^2+\left(c-a\right)^2+\left(a-b\right)^2\)
\(=\left(b-c\right)\left(b+c\right)+\left(c-a\right)\left(c+a\right)+\left(a-b\right)\left(a+b\right)\)
\(=\left(b-c\right)\left(0-a\right)+\left(c-a\right)\left(0-b\right)+\left(a-b\right)\left(0-c\right)\)
\(=-a\left(b-c\right)-b\left(c-a\right)-c\left(a-b\right)\)
\(=-ab+ac-bc+ab-ac+bc\)
\(=\left(-ab+ab\right)+\left(-bc+bc\right)+\left(-ac+ac\right)=0+0+0=0\)
\(\Rightarrow Q=\dfrac{\left(a^2+b^2+c^2\right)}{0}=????\)
Unsatisfactory, so Q is void