Kaya Renger Coordinator
28/09/2017 at 17:21-
\(x^2+2xy+6x+6y+2y^2+8=0\)
\(\Leftrightarrow x^2+y^2+9+2xy+6y+6x+y^2-1=0\)
\(\Leftrightarrow\left(x+y+3\right)^2+y^2=1\)
\(y^2\ge0\Rightarrow\left(x+y+3\right)^2\le1\Rightarrow-1\le x+y+3\le1\)
\(\Leftrightarrow2012\le x+y+2016\le2014\)
Hence :
B = 2012 only when : y = 0 ; x = 2012 - 2016 = -4
B = 2014 only when : y = 0 ; x = 2014 - 2016 = -2
Kaya Renger selected this answer. -
Vũ Trung Dũng 30/09/2017 at 18:07
x2+2xy+6x+6y+2y2+8=0x2+2xy+6x+6y+2y2+8=0
⇔x2+y2+9+2xy+6y+6x+y2−1=0⇔x2+y2+9+2xy+6y+6x+y2−1=0
⇔(x+y+3)2+y2=1⇔(x+y+3)2+y2=1
y2≥0⇒(x+y+3)2≤1⇒−1≤x+y+3≤1y2≥0⇒(x+y+3)2≤1⇒−1≤x+y+3≤1
⇔2012≤x+y+2016≤2014⇔2012≤x+y+2016≤2014
Hence :
B = 2012 only when : y = 0 ; x = 2012 - 2016 = -4
B = 2014 only when : y = 0 ; x = 2014 - 2016 = -2