MathYouLike MathYouLike
  • Toggle menubar
  • Toggle fullscreen
  • Toggle Search
  •    Sign up
  • QUESTIONS
  • TAGS
  • USERS
  • BADGES
  • UNANSWERD
  • ASK A QUESTION
  • BLOG
...

Nguyễn Tuấn Minh

25/09/2017 at 19:37
Answers
1
Follow

Given the real numbers a,b and c such that \(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}=\dfrac{4}{a+b+c}\)

Find the value of the expression

\(M=\dfrac{a^2}{b+c}+\dfrac{b^2}{c+a}+\dfrac{c^2}{a+b}\)




    List of answers
  • ...
    Nguyễn Đặng Hoàng Phúc 09/11/2017 at 14:16

    We have:\(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}=\dfrac{4}{a+b+c}\Leftrightarrow\dfrac{a+b+c}{a+b}+\dfrac{a+b+c}{b+c}+\dfrac{a+b+c}{c+a}=4\Leftrightarrow\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}=1\)\(\Rightarrow\left(a+b+c\right)\left(\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}\right)=a+b+c\Leftrightarrow\dfrac{a^2+ab+ca}{b+c}+\dfrac{ba+b^2+cb}{c+a}+\dfrac{ac+cb+c^2}{a+b}=a+b+c\Leftrightarrow\dfrac{a^2}{b+c}+\dfrac{c^2}{a+b}+\dfrac{b^2}{a+c}+a+b+c=a+b+c\Leftrightarrow\dfrac{a^2}{b+c}+\dfrac{b^2}{a+c}+\dfrac{c^2}{a+b}=0\)


Post your answer

Please help Nguyễn Tuấn Minh to solve this problem!



Weekly ranking


© HCEM 10.1.29.225
Crafted with by HCEM