MathYouLike MathYouLike
  • Toggle menubar
  • Toggle fullscreen
  • Toggle Search
  •    Sign up
  • QUESTIONS
  • TAGS
  • USERS
  • BADGES
  • UNANSWERD
  • ASK A QUESTION
  • BLOG
...

Kaya Renger Coordinator

22/09/2017 at 11:21
Answers
5
Follow

Given a,b are positive number satisfy a + b \(\le\) 1

Find minimum value of S know :

S = ab + \(\dfrac{1}{ab}\)




    List of answers
  • ...
    Faded 28/01/2018 at 20:42

    No :< , we can do this !

    Denote t=1ab

     ; 1t=ab

    t=1ab≥1(a+b2)2=1(12)2=4

    Predict a = b = 12

     then t = 4 , we have :

    S=1t+t=(1t+t16)+15t16≥2.√1t.t16+15.416=174

    So MinS=174

    ⇔a=b=12

  • ...
    Kaya Renger Coordinator 22/09/2017 at 16:39

    No :< , we can do this !

    Denote \(t=\dfrac{1}{ab}\) ; \(\dfrac{1}{t}=ab\)

    \(t=\dfrac{1}{ab}\ge\dfrac{1}{\left(\dfrac{a+b}{2}\right)^2}=\dfrac{1}{\left(\dfrac{1}{2}\right)^2}=4\)

    Predict a = b = \(\dfrac{1}{2}\) then t = 4 , we have :

    \(S=\dfrac{1}{t}+t=\left(\dfrac{1}{t}+\dfrac{t}{16}\right)+\dfrac{15t}{16}\ge2.\sqrt{\dfrac{1}{t}.\dfrac{t}{16}}+\dfrac{15.4}{16}=\dfrac{17}{4}\)

    So \(Min_S=\dfrac{17}{4}\) 

    \(\Leftrightarrow a=b=\dfrac{1}{2}\)

  • ...
    Lê Quốc Trần Anh Coordinator 22/09/2017 at 16:44

    Oh, I was wrong! Thanks Dao Trong Luan and Kaya Renger :) 

  • ...
    Dao Trong Luan 22/09/2017 at 16:43

    a,b are positive number, aren't integer, so they can are positive fraction

    So Lê Quốc Trần Anh is wrong

  • ...
    Lê Quốc Trần Anh Coordinator 22/09/2017 at 15:30

    Because a,b are positive numbers and a + b = 1

    => a = b = 0 or a = 1; b = 0 or a = 0;b = 1.

    If a = b = 0 then \(\dfrac{1}{ab}=\dfrac{1}{0}\) (unsatisfy)

    If a or b = 0 or 1, then \(\dfrac{1}{ab}=\dfrac{1}{0}\) (unsatisfy)

    So there is no \(a,b\) satisfy.


Post your answer

Please help Kaya Renger to solve this problem!



Weekly ranking


© HCEM 10.1.29.225
Crafted with by HCEM