MathYouLike MathYouLike
  • Toggle menubar
  • Toggle fullscreen
  • Toggle Search
  •    Sign up
  • QUESTIONS
  • TAGS
  • USERS
  • BADGES
  • UNANSWERD
  • ASK A QUESTION
  • BLOG
...

Flash Shit :3

17/09/2017 at 08:38
Answers
2
Follow

Find all square numbers writein by 4 digits know if we add into thousands 1 unit , add into hundreds 3 units, add into tenth 5 unit and into unit row 3 unit so that we still have a square number. 




    List of answers
  • ...
    Kaya Renger Coordinator 17/09/2017 at 08:56

    Call the formular of numbers we need to find is \(\overline{abcd}\)

    Condition : m + k < 200 

    Following the thread, we have :

    \(\left\{{}\begin{matrix}\overline{abcd}=k^2\\\overline{\left(a+1\right)\left(b+3\right)\left(c+5\right)\left(d+3\right)}=m^2\end{matrix}\right.\)

    \(\Leftrightarrow\left\{{}\begin{matrix}\overline{abcd}=k^2\\\overline{abcd}+1353=m^2\end{matrix}\right.\)

    => m2 - k2 = 1353 

    <=> (m - k)(m + k) = 1353 = 123.11 = 41.33 

    => \(\left\{{}\begin{matrix}m+k=123\\m-k=11\end{matrix}\right.\)  or  \(\left\{{}\begin{matrix}m+k=41\\m-k=33\end{matrix}\right.\)

    => \(\left\{{}\begin{matrix}m=67\\k=56\end{matrix}\right.\)    or    \(\left\{{}\begin{matrix}m=37\\k=4\end{matrix}\right.\)

    With m = 67 ; k = 56

    => \(\left\{{}\begin{matrix}\overline{abcd}=k^2=3136\\\overline{abcd}=m^2-1353=3136\end{matrix}\right.\Rightarrow\overline{abcd}=3136\)

    With m = 37 , k = 4

    => .......... (This case is disqualified , you can solve that equation)

    So , the number we need to find is 3136 

    Selected by MathYouLike
  • ...
    Faded 28/01/2018 at 20:43

    Call the formular of numbers we need to find is ¯¯¯¯¯¯¯¯¯¯abcd

    Condition : m + k < 200 

    Following the thread, we have :

    {¯¯¯¯¯¯¯¯¯¯abcd=k2¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯(a+1)(b+3)(c+5)(d+3)=m2

    ⇔{¯¯¯¯¯¯¯¯¯¯abcd=k2¯¯¯¯¯¯¯¯¯¯abcd+1353=m2

    => m2 - k2 = 1353 

    <=> (m - k)(m + k) = 1353 = 123.11 = 41.33 

    => {m+k=123m−k=11

      or  {m+k=41m−k=33

    => {m=67k=56

        or    {m=37k=4

    With m = 67 ; k = 56

    => {¯¯¯¯¯¯¯¯¯¯abcd=k2=3136¯¯¯¯¯¯¯¯¯¯abcd=m2−1353=3136⇒¯¯¯¯¯¯¯¯¯¯abcd=3136

    With m = 37 , k = 4

    => .......... (This case is disqualified , you can solve that equation)

    So , the number we need to find is 3136


Post your answer

Please help Flash Shit :3 to solve this problem!



Weekly ranking


© HCEM 10.1.29.225
Crafted with by HCEM