Kaya Renger Coordinator
16/09/2017 at 21:33-
b) Denote \(2n=a^2+b^2\left(a,b\in Z\right)\), then a2, b2 are both odd or even. So, a,b are both odd or even. Hence, \(a\pm b⋮2\) or \(\dfrac{a\pm b}{2}\in Z\).
We have :
\(n=\dfrac{a^2}{2}+\dfrac{b^2}{2}=\left(\dfrac{a^2}{4}+2.\dfrac{a}{2}.\dfrac{b}{2}+\dfrac{b^2}{4}\right)+\left(\dfrac{a^2}{4}-2.\dfrac{a}{2}.\dfrac{b}{2}+\dfrac{b^2}{4}\right)\)
\(=\left(\dfrac{a+b}{2}\right)^2+\left(\dfrac{a-b}{2}\right)^2\) is the sum of 2 perfect squares
Selected by MathYouLike -
Math You Like 17/09/2017 at 07:58
We have : n = a2 + b2 (a ; b e z) then:
2n = 2a2 + 2b2 = a2 - 2ab + b2 + a2 + 2ab + b2 = (a - b)2 + (a + b)2
-
a) Denote \(n=a^2+b^2\left(a,b\in Z\right)\), then :
\(2n=2a^2+2b^2=a^2-2ab+b^2+a^2+2ab+b^2=\left(a-b\right)^2+\left(a+b\right)^2\)