MathYouLike MathYouLike
  • Toggle menubar
  • Toggle fullscreen
  • Toggle Search
  •    Sign up
  • QUESTIONS
  • TAGS
  • USERS
  • BADGES
  • UNANSWERD
  • ASK A QUESTION
  • BLOG
...

Kaya Renger Coordinator

16/09/2017 at 21:33
Answers
3
Follow

Prove that :

a) If n is the sum of two square numbers so that 2n is the sum of two square numbers too.

b) If 2n is the sum of two square numbers so that n is the sum of two square numbers too. 




    List of answers
  • ...
    Phan Thanh Tinh Coordinator 16/09/2017 at 23:48

    b) Denote \(2n=a^2+b^2\left(a,b\in Z\right)\), then a2, b2 are both odd or even. So, a,b are both odd or even. Hence, \(a\pm b⋮2\) or \(\dfrac{a\pm b}{2}\in Z\).

    We have :

    \(n=\dfrac{a^2}{2}+\dfrac{b^2}{2}=\left(\dfrac{a^2}{4}+2.\dfrac{a}{2}.\dfrac{b}{2}+\dfrac{b^2}{4}\right)+\left(\dfrac{a^2}{4}-2.\dfrac{a}{2}.\dfrac{b}{2}+\dfrac{b^2}{4}\right)\)

    \(=\left(\dfrac{a+b}{2}\right)^2+\left(\dfrac{a-b}{2}\right)^2\) is the sum of 2 perfect squares

    Selected by MathYouLike
  • ...
    Math You Like 17/09/2017 at 07:58

    We have : n = a2 + b2 (a ; b e z) then:

    2n = 2a2 + 2b2 = a2 - 2ab + b2 + a2 + 2ab + b2 = (a - b)2 + (a + b)2

  • ...
    Phan Thanh Tinh Coordinator 16/09/2017 at 23:35

    a) Denote \(n=a^2+b^2\left(a,b\in Z\right)\), then :

    \(2n=2a^2+2b^2=a^2-2ab+b^2+a^2+2ab+b^2=\left(a-b\right)^2+\left(a+b\right)^2\)


Post your answer

Please help Kaya Renger to solve this problem!



Weekly ranking


© HCEM 10.1.29.225
Crafted with by HCEM