MathYouLike MathYouLike
  • Toggle menubar
  • Toggle fullscreen
  • Toggle Search
  •    Sign up
  • QUESTIONS
  • TAGS
  • USERS
  • BADGES
  • UNANSWERD
  • ASK A QUESTION
  • BLOG
...

Kaya Renger Coordinator

13/09/2017 at 12:34
Answers
1
Follow

Find Minimum value of :

A = x2 + 8x + 1

B = x2 - x + 1




    List of answers
  • ...
    Dao Trong Luan 13/09/2017 at 12:56

    A = x2 + 8x + 1 

    = x2 + 2.x.4 + 16 - 15

    = \(\left(x+4\right)^2-15\ge-15\)

    => Minimum of A = -15 at \(\left(x+4\right)^2=0\) and x = -4

    B = x2 - x + 1 

    = \(x^2-2\cdot x\cdot\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)

    \(=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)

    => Minimun of B = \(\dfrac{3}{4}\) at \(\left(x-\dfrac{1}{2}\right)^2=0\) and x = \(\dfrac{1}{2}\)

    Selected by MathYouLike

Post your answer

Please help Kaya Renger to solve this problem!



Weekly ranking


© HCEM 10.1.29.225
Crafted with by HCEM