MathYouLike MathYouLike
  • Toggle menubar
  • Toggle fullscreen
  • Toggle Search
  •    Sign up
  • QUESTIONS
  • TAGS
  • USERS
  • BADGES
  • UNANSWERD
  • ASK A QUESTION
  • BLOG
...

Kaya Renger Coordinator

13/09/2017 at 12:33
Answers
3
Follow

Prove that :

A = x2 - xy + y2 > 0 (\(\forall x,y\) ; \(A\ne0\))

 




    List of answers
  • ...
    Dao Trong Luan 13/09/2017 at 13:11

    \(A=x^2-xy+y^2>x^2-xy-xy+y^2\)

    \(\Rightarrow A>x^2-2xy+y^2\)

    \(\Rightarrow A>\left(x-y\right)^2\)

    But \(\left(x-y\right)^2\ge0\)

    \(\Leftrightarrow A\ge0\)

    But \(A\ne0\Rightarrow A>0\)

    Selected by MathYouLike
  • ...
    Vũ Trung Dũng 30/09/2017 at 18:07

    A=x2−xy+y2>x2−xy−xy+y2A=x2−xy+y2>x2−xy−xy+y2

    ⇒A>x2−2xy+y2⇒A>x2−2xy+y2

    ⇒A>(x−y)2⇒A>(x−y)2

    But (x−y)2≥0(x−y)2≥0

    ⇔A≥0⇔A≥0

    But A≠0⇒A>0

  • ...
    Dinh Hung 28/09/2017 at 21:29

    We have : \(A=x^2-xy+y^2=\left(x^2-xy+\dfrac{1}{4}y^2\right)+\dfrac{3}{4}y^2=\left(x-\dfrac{1}{2}y\right)^2+\dfrac{3}{4}y^2>0\forall x;y;A\ne0\)


Post your answer

Please help Kaya Renger to solve this problem!



Weekly ranking


© HCEM 10.1.29.225
Crafted with by HCEM