Kaya Renger Coordinator
13/09/2017 at 12:33-
Dao Trong Luan 13/09/2017 at 13:11
\(A=x^2-xy+y^2>x^2-xy-xy+y^2\)
\(\Rightarrow A>x^2-2xy+y^2\)
\(\Rightarrow A>\left(x-y\right)^2\)
But \(\left(x-y\right)^2\ge0\)
\(\Leftrightarrow A\ge0\)
But \(A\ne0\Rightarrow A>0\)
Selected by MathYouLike -
Vũ Trung Dũng 30/09/2017 at 18:07
A=x2−xy+y2>x2−xy−xy+y2A=x2−xy+y2>x2−xy−xy+y2
⇒A>x2−2xy+y2⇒A>x2−2xy+y2
⇒A>(x−y)2⇒A>(x−y)2
But (x−y)2≥0(x−y)2≥0
⇔A≥0⇔A≥0
But A≠0⇒A>0
-
Dinh Hung 28/09/2017 at 21:29
We have : \(A=x^2-xy+y^2=\left(x^2-xy+\dfrac{1}{4}y^2\right)+\dfrac{3}{4}y^2=\left(x-\dfrac{1}{2}y\right)^2+\dfrac{3}{4}y^2>0\forall x;y;A\ne0\)