MathYouLike MathYouLike
  • Toggle menubar
  • Toggle fullscreen
  • Toggle Search
  •    Sign up
  • QUESTIONS
  • TAGS
  • USERS
  • BADGES
  • UNANSWERD
  • ASK A QUESTION
  • BLOG
...

Kaya Renger Coordinator

09/09/2017 at 14:43
Answers
4
Follow

Given x, y \(\ge0\) satisfy x3 + y3 = x - y

Find maximum of A know A = x2 + y2




    List of answers
  • ...
    Dao Trong Luan 09/09/2017 at 16:20

    \(x^3+y^3=x-y\)

    \(\Rightarrow x^3+y^3-x+y=0\)

    \(\Rightarrow x^3-x+y^3+y=0\)

    \(\Rightarrow x\left(x^2-1\right)+y\left(y^2+1\right)=0\)

    But \(x,y\ge0\)

    \(\Rightarrow x^2,y^2\ge0\Leftrightarrow x\left(x^2-1\right);y\left(y^2+1\right)\ge0\)

    => \(x\left(x^2-1\right)andy\left(y^2+1\right)\) aren't two numbers opposite

    \(\Rightarrow x\left(x^2-1\right)+y\left(y^2+1\right)=0\)

    \(\Rightarrow\left[{}\begin{matrix}x\left(x^2-1\right)=0\\y\left(y^2+1\right)=0\end{matrix}\right.\)

    \(\Rightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}x=0\\x^2-1=0\end{matrix}\right.\\\left[{}\begin{matrix}y=0\\y^2+1=0\end{matrix}\right.\end{matrix}\right.\)

    \(\Rightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}x=0\\x=\pm1\end{matrix}\right.\\\left[{}\begin{matrix}y=0\\y\in\phi\end{matrix}\right.\end{matrix}\right.\)

    But \(x\ge0\Rightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)

    \(\Rightarrow MaxA=x^2+y^2=1^2+0^2=1+0=1\)

  • ...
    Phan Thanh Tinh Coordinator 09/09/2017 at 20:55

    You were wrong. \(x^2-1\ge0\) is not always true

  • ...
    Dao Trong Luan 09/09/2017 at 17:54

    @Phan Thanh Tinh, in the subject said \(x,y\ge0\), so I only apply :]

  • ...
    Phan Thanh Tinh Coordinator 09/09/2017 at 16:38

    Dao Trong Luan, the statement \(x\left(x^2-1\right)\ge0\) is wrong when x < 1


Post your answer

Please help Kaya Renger to solve this problem!



Weekly ranking


© HCEM 10.1.29.225
Crafted with by HCEM