MathYouLike MathYouLike
  • Toggle menubar
  • Toggle fullscreen
  • Toggle Search
  •    Sign up
  • QUESTIONS
  • TAGS
  • USERS
  • BADGES
  • UNANSWERD
  • ASK A QUESTION
  • BLOG
...

Kaya Renger Coordinator

08/09/2017 at 21:53
Answers
1
Follow

Given x = ax + by ; y = ax + cz ; z = by + cz    and    \(x+y+z\ne0\)

Prove that : \(\dfrac{1}{1+a}+\dfrac{1}{1+b}+\dfrac{1}{1+c}=2\)




    List of answers
  • ...
    Phan Thanh Tinh Coordinator 09/09/2017 at 10:09

    We have :

    \(x+y+z=by+cz+ax+cz+ax+by=2\left(ax+by+cz\right)\)

    \(=2\left(z+cz\right)=2z\left(1+c\right)\)

    or \(=2\left(y+by\right)=2y\left(1+b\right)\)

    or \(=2\left(x+ax\right)=2x\left(1+a\right)\)

    \(\Rightarrow\left\{{}\begin{matrix}\dfrac{1}{1+c}=\dfrac{2z}{x+y+z}\\\dfrac{1}{1+b}=\dfrac{2y}{x+y+z}\\\dfrac{1}{1+a}=\dfrac{2x}{x+y+z}\end{matrix}\right.\)\(\Rightarrow\dfrac{1}{1+a}+\dfrac{1}{1+b}+\dfrac{1}{1+c}=\dfrac{2x+2y+2z}{x+y+z}=2\)

    P/S : The question must be corrected as shown :

    x = by + cz ; y = ax + cz ; z = ax + by

    Selected by MathYouLike

Post your answer

Please help Kaya Renger to solve this problem!



Weekly ranking


© HCEM 10.1.29.225
Crafted with by HCEM