MathYouLike MathYouLike
  • Toggle menubar
  • Toggle fullscreen
  • Toggle Search
  •    Sign up
  • QUESTIONS
  • TAGS
  • USERS
  • BADGES
  • UNANSWERD
  • ASK A QUESTION
  • BLOG
...

Nguyễn Tất Đạt

04/09/2017 at 17:27
Answers
1
Follow

Solve these equality:

(a+b)2=(a-b)2+4ab

a2+b2=1/2[(a+b)2+(a-b)2]




    List of answers
  • ...
    VTK-VangTrangKhuyet 04/09/2017 at 19:45

    a) \(\left(a+b\right)^2=\left(a-b\right)^2+4ab\)

    We can see in R.S we have \(\left(a-b\right)^2+4ab=a^2-2ab+b^2+4ab=a^2+2ab+b^2=\left(a+b\right)^2=L.S\)

    So \(\left(a+b\right)^2=\left(a-b\right)^2+4ab\)

    b) \(a^2+b^2=\dfrac{1}{2}\cdot\left(\left(a+b\right)^2+\left(a-b\right)^2\right)\)

    Start in the R.S we have \(\dfrac{1}{2}\cdot\left(\left(a+b\right)^2+\left(a-b\right)^2\right)=\dfrac{1}{2}\cdot\left(a^2+2ab+b^2+a^2-2ab+b^2\right)=\dfrac{1}{2}\cdot\left(2a^2+2b^2\right)\)

    The same with \(\dfrac{2a^2+2b^2}{2}=a^2+b^2=L.S\)

    So \(a^2+b^2=\dfrac{1}{2}\cdot\left(\left(a+b\right)^2+\left(a-b\right)^2\right)\)

    Nguyễn Tất Đạt selected this answer.

Post your answer

Please help Nguyễn Tất Đạt to solve this problem!



Weekly ranking


© HCEM 10.1.29.225
Crafted with by HCEM