MathYouLike MathYouLike
  • Toggle menubar
  • Toggle fullscreen
  • Toggle Search
  •    Sign up
  • QUESTIONS
  • TAGS
  • USERS
  • BADGES
  • UNANSWERD
  • ASK A QUESTION
  • BLOG
...

Kaya Renger Coordinator

02/09/2017 at 16:51
Answers
2
Follow

Given a,b,c > 0

Prove that : \(\dfrac{ab}{c}+\dfrac{bc}{a}+\dfrac{ca}{b}\ge a+b+c\)




    List of answers
  • ...
    Dao Trong Luan 02/09/2017 at 17:55

    We have:

    \(\dfrac{ab}{c}+\dfrac{bc}{a}+\dfrac{ca}{b}=\dfrac{ab}{2c}+\dfrac{bc}{2a}+\dfrac{ca}{2b}+\dfrac{ca}{2b}+\dfrac{ab}{2c}+\dfrac{bc}{2a}\)

    \(\ge2\sqrt{\dfrac{ab}{2c}\cdot\dfrac{ca}{2b}}+2\sqrt{\dfrac{bc}{2a}\cdot\dfrac{ca}{2b}}+2\sqrt{\dfrac{ab}{2c}\cdot\dfrac{bc}{2a}}=a+b+c\)

    \(\Rightarrow\dfrac{ab}{c}+\dfrac{bc}{a}+\dfrac{ac}{b}\ge a+b+c\)

    The "=" occurs when a = b = c

    Selected by MathYouLike
  • ...
    Faded 28/01/2018 at 21:31

    We have:

    abc+bca+cab=ab2c+bc2a+ca2b+ca2b+ab2c+bc2a

    ≥2√ab2c⋅ca2b+2√bc2a⋅ca2b+2√ab2c⋅bc2a=a+b+c

    ⇒abc+bca+acb≥a+b+c

    The "=" occurs when a = b = c


Post your answer

Please help Kaya Renger to solve this problem!



Weekly ranking


© HCEM 10.1.29.225
Crafted with by HCEM