MathYouLike MathYouLike
  • Toggle menubar
  • Toggle fullscreen
  • Toggle Search
  •    Sign up
  • QUESTIONS
  • TAGS
  • USERS
  • BADGES
  • UNANSWERD
  • ASK A QUESTION
  • BLOG
...

Kaya Renger Coordinator

01/09/2017 at 21:16
Answers
2
Follow

Solve the equation : 

x4 = 4x + 1 




    List of answers
  • ...
    Phan Thanh Tinh Coordinator 01/09/2017 at 23:44

    \(x^4=4x+1\Leftrightarrow x^4-4x-1=0\)

    \(\Leftrightarrow x^4+2x^2+1-2x^2-4x-2=0\)

    \(\Leftrightarrow\left(x^2+1\right)^2-2\left(x+1\right)^2=0\)

    \(\Leftrightarrow\left(x^2+1-\sqrt{2}x-\sqrt{2}\right)\left(x^2+1+\sqrt{2}x+\sqrt{2}\right)=0\)

    1) \(x^2+1-\sqrt{2}x-\sqrt{2}=0\)

    \(\Rightarrow x=\dfrac{\sqrt{2}\pm\sqrt{2-4\left(1-\sqrt{2}\right)}}{2}=\dfrac{\sqrt{2}\pm\sqrt{4\sqrt{2}-2}}{2}\)

    2) \(x^2+1+\sqrt{2}x+\sqrt{2}=0\)

    The equation has no roots since \(\left(\sqrt{2}\right)^2-4.1.\left(1+\sqrt{2}\right)< 0\)

    So, the set of roots of the equation is \(S=\left\{\dfrac{\sqrt{2}\pm\sqrt{4\sqrt{2}-2}}{2}\right\}\)

    Selected by MathYouLike
  • ...
    Dao Trong Luan 01/09/2017 at 22:03

    x4 = 4x + 1

    => x4 - 4x - 1 = 0

    => \(\left(x^2\right)^2+2x^2+1-2x^2-4x-2=0\)

    \(\Rightarrow\left(x^2+1\right)^2-2\left(x^2+2x+1\right)=0\)

    \(\Rightarrow\left(x^2+1\right)^2-2\left(x+1\right)^2=0\)

    \(\Rightarrow\left(x^2+1\right)^2=2\left(x+1\right)^2\)

    \(\Rightarrow\sqrt{\left(x^2+1\right)^2}=\sqrt{2\left(x+1\right)^2}\)

    \(\Rightarrow x^2+1=\sqrt{2}\cdot\left(x+1\right)\)

    => x = 1,663251939


Post your answer

Please help Kaya Renger to solve this problem!



Weekly ranking


© HCEM 10.1.29.225
Crafted with by HCEM