MathYouLike MathYouLike
  • Toggle menubar
  • Toggle fullscreen
  • Toggle Search
  •    Sign up
  • QUESTIONS
  • TAGS
  • USERS
  • BADGES
  • UNANSWERD
  • ASK A QUESTION
  • BLOG
...

Summer Clouds moderators

01/09/2017 at 09:32
Answers
1
Follow

Given a square ABCD. M is midpoint of DC, O is intersection point of AM and BD.
Calculate area of triangle ODM if AB = a(cm).




    List of answers
  • ...
    Phan Thanh Tinh Coordinator 01/09/2017 at 13:07

    A B C D O E M

    Let E be the intersection of AC and BD, then E is the midpoint of AC

    The medians AM, DE of \(\Delta ADC\) intersect at O, so O is the centroid of \(\Delta ABC\). Then, \(OM=\dfrac{1}{3}AM\)

    \(\Delta ODM,\Delta ADM\) have the same altitude drawn from D to AM ; the bases \(OM=\dfrac{1}{3}AM\), so :

    \(S_{ODM}=\dfrac{S_{ADM}}{3}=\dfrac{a.\dfrac{a}{2}}{2}:3=\dfrac{a^2}{12}\) (cm2)

    Selected by MathYouLike

Post your answer

Please help Summer Clouds to solve this problem!



Weekly ranking


© HCEM 10.1.29.225
Crafted with by HCEM