Vương Ngọc Như Quỳnh
29/08/2017 at 20:53-
VTK-VangTrangKhuyet 29/08/2017 at 20:58
We have to prove \(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{a+b}\)
Let it be : \(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{a+b}\)(1).
We have (1) <=> \(\dfrac{a+b}{ab}\ge\dfrac{4}{a+b}\Leftrightarrow\left(a+b\right)^2\ge4ab\Leftrightarrow a^2-2ab+b^2\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\ge0\), true with all a,b > 0.
Done !
Vương Ngọc Như Quỳnh selected this answer. -
Dao Trong Luan 29/08/2017 at 21:01
We have:
\(\left(a-b\right)^2\ge0\)
=> a2 + b2 \(\ge2ab\)
=> a2 + b2 + 2ab \(\ge2\left(2ab\right)=4ab\)
=> \(\left(a+b\right)^2\ge4ab\)
Because a > 0, b > 0 => a+b > 0
\(\Rightarrow\dfrac{a+b}{ab}\ge\dfrac{4}{a+b}\Leftrightarrow\dfrac{a}{ab}+\dfrac{b}{ab}\ge\dfrac{4}{a+b}\)
\(\Rightarrow\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{a+b}\)
So, .......