MathYouLike MathYouLike
  • Toggle menubar
  • Toggle fullscreen
  • Toggle Search
  •    Sign up
  • QUESTIONS
  • TAGS
  • USERS
  • BADGES
  • UNANSWERD
  • ASK A QUESTION
  • BLOG
...

Vương Ngọc Như Quỳnh

29/08/2017 at 20:53
Answers
2
Follow

Prove that :

With a,b are real interger numbers we have : 

\(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{a+b}\)




    List of answers
  • ...
    VTK-VangTrangKhuyet 29/08/2017 at 20:58

    We have to prove \(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{a+b}\)

    Let it be : \(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{a+b}\)(1).

    We have (1) <=> \(\dfrac{a+b}{ab}\ge\dfrac{4}{a+b}\Leftrightarrow\left(a+b\right)^2\ge4ab\Leftrightarrow a^2-2ab+b^2\ge0\)

    \(\Leftrightarrow\left(a-b\right)^2\ge0\), true with all a,b > 0.

    Done ! 

    Vương Ngọc Như Quỳnh selected this answer.
  • ...
    Dao Trong Luan 29/08/2017 at 21:01

    We have:

    \(\left(a-b\right)^2\ge0\)

    => a2 + b2 \(\ge2ab\)

    => a2 + b2 + 2ab \(\ge2\left(2ab\right)=4ab\)

    => \(\left(a+b\right)^2\ge4ab\)

    Because a > 0, b > 0 => a+b > 0

    \(\Rightarrow\dfrac{a+b}{ab}\ge\dfrac{4}{a+b}\Leftrightarrow\dfrac{a}{ab}+\dfrac{b}{ab}\ge\dfrac{4}{a+b}\)

    \(\Rightarrow\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{a+b}\)

    So, .......


Post your answer

Please help Vương Ngọc Như Quỳnh to solve this problem!



Weekly ranking


© HCEM 10.1.29.225
Crafted with by HCEM