MathYouLike MathYouLike
  • Toggle menubar
  • Toggle fullscreen
  • Toggle Search
  •    Sign up
  • QUESTIONS
  • TAGS
  • USERS
  • BADGES
  • UNANSWERD
  • ASK A QUESTION
  • BLOG
...

Vương Ngọc Như Quỳnh

29/08/2017 at 20:53
Answers
1
Follow

Give a,b are two real intergers \(a\ge-\dfrac{1}{4},b\ge-\dfrac{1}{4},a+b=1\)

Prove : \(\sqrt{4a+1}+\sqrt{4b+1}\le\sqrt{12}\)




    List of answers
  • ...
    VTK-VangTrangKhuyet 29/08/2017 at 20:56

    Using Bunhiakovski's inequaility :

    \(\left(1\cdot\sqrt{4a+1}+1\cdot\sqrt{4b+1}\right)^2\le\left(1^2+1^2\right)\cdot\left(4a+1+4b+1\right)=2\cdot6=12\)

    => \(\sqrt{4a+1}+\sqrt{4b+1}\le\sqrt{12}\)

    The "=" happens when a = b = \(\dfrac{1}{2}\)

    Vương Ngọc Như Quỳnh selected this answer.

Post your answer

Please help Vương Ngọc Như Quỳnh to solve this problem!



Weekly ranking


© HCEM 10.1.29.225
Crafted with by HCEM