Phan Thanh Tinh Coordinator
29/08/2017 at 09:57-
Nguyễn Tất Đạt 02/09/2017 at 07:56
I have a picture:
From point M, draw ray MN parallel with AC. (N\(\in\)DB)
AB=AD \(\Rightarrow\)\(\Delta\)BAD is an isosceles triangle \(\Rightarrow\widehat{ABD}=\widehat{ADB}\)
But \(\widehat{MNB}=\widehat{ADB}\) (Isotopes)
So \(\widehat{ABD}=\widehat{MNB}\) or \(\widehat{MBN}=\widehat{MNB}\)
\(\Rightarrow\Delta BMN\) is a isosceles triangle \(\Rightarrow BM=MN\).
Because BM=CD \(\Rightarrow MN=CD\).
\(MN\)//AC \(\Rightarrow\)MN//CD \(\Rightarrow\left\{{}\begin{matrix}\widehat{MNI}=\widehat{CDI}\\\widehat{NMI}=\widehat{DCI}\end{matrix}\right.\)
\(\Rightarrow\Delta MIN=\Delta CID\) (Angular angle)
Now we can prove that IM=IC (Corresponding edges)
Phan Thanh Tinh selected this answer.