MathYouLike MathYouLike
  • Toggle menubar
  • Toggle fullscreen
  • Toggle Search
  •    Sign up
  • QUESTIONS
  • TAGS
  • USERS
  • BADGES
  • UNANSWERD
  • ASK A QUESTION
  • BLOG
...

Phan Thanh Tinh Coordinator

29/08/2017 at 09:57
Answers
1
Follow

Given \(\Delta ABC\left(AB< AC\right)\). Draw D on ray AC such that AD = AB. Draw M on ray BA such that BM = CD. MC cuts BD at I. Prove that IM = IC




    List of answers
  • ...
    Nguyễn Tất Đạt 02/09/2017 at 07:56

    I have a picture:

    A B C D M I N

    From point M, draw ray MN parallel with AC. (N\(\in\)DB)

    AB=AD \(\Rightarrow\)\(\Delta\)BAD is an isosceles triangle \(\Rightarrow\widehat{ABD}=\widehat{ADB}\)

    But \(\widehat{MNB}=\widehat{ADB}\) (Isotopes)

    So \(\widehat{ABD}=\widehat{MNB}\) or \(\widehat{MBN}=\widehat{MNB}\) 

    \(\Rightarrow\Delta BMN\) is a isosceles triangle \(\Rightarrow BM=MN\).

    Because BM=CD \(\Rightarrow MN=CD\).

    \(MN\)//AC \(\Rightarrow\)MN//CD \(\Rightarrow\left\{{}\begin{matrix}\widehat{MNI}=\widehat{CDI}\\\widehat{NMI}=\widehat{DCI}\end{matrix}\right.\)

    \(\Rightarrow\Delta MIN=\Delta CID\) (Angular angle)

    Now we can prove that IM=IC (Corresponding edges)

    Phan Thanh Tinh selected this answer.

Post your answer

Please help Phan Thanh Tinh to solve this problem!



Weekly ranking


© HCEM 10.1.29.225
Crafted with by HCEM