MathYouLike MathYouLike
  • Toggle menubar
  • Toggle fullscreen
  • Toggle Search
  •    Sign up
  • QUESTIONS
  • TAGS
  • USERS
  • BADGES
  • UNANSWERD
  • ASK A QUESTION
  • BLOG
...

Flash Shit :3

22/08/2017 at 12:22
Answers
2
Follow

Prove that :

A = 1 + 2 + 22 + 23 + .......... + 214 \(⋮\) 31




    List of answers
  • ...
    Kaya Renger Coordinator 22/08/2017 at 12:32

    @Dao Trong Luan , you are wrong :v 

    \(A=1+2+2^2+..........+2^{14}\)

    \(A=\left(2^0+2^1+2^2+2^3+2^4\right)+\left(2^5+2^6+......+2^9\right)+\left(2^{10}+2^{11}+......+2^{14}\right)\)

    \(A=31.1+2^5.31+2^{10}.31\)

    \(A=31\left(1+2^5+2^{10}\right)⋮31\)

    Selected by MathYouLike
  • ...
    Dao Trong Luan 22/08/2017 at 12:28

    1 + 2 + 22 + ... + 214

    = [1 + 2 + 22 + 23 + 24] + 26[1 + 2 + 22 + 23 + 24] + 211[1 + 2 + 22 + 23]

    = 31 + 26.31 + 211.15 

    But 211.15 \(⋮̸31\)

    => A \(⋮̸31\)

    This question was wrong


Post your answer

Please help Flash Shit :3 to solve this problem!



Weekly ranking


© HCEM 10.1.29.225
Crafted with by HCEM