Flash Shit :3
22/08/2017 at 12:21-
Dao Trong Luan 22/08/2017 at 12:38
We have:
\(\widehat{A_1}+\widehat{D_2}+\widehat{C}=180^o\)
\(\widehat{A_2}+\widehat{D_1}+\widehat{B}=180^o\)
\(\Rightarrow\widehat{A_1}+\widehat{D_2}+\widehat{C}+\widehat{A_2}+\widehat{D_1}+\widehat{B}=180^0+180^0\)
=> \(\widehat{A}+\widehat{B}+\widehat{C}+\widehat{D}=360^0\)
So the sum of four angles in a quadrilateral is 360o
Selected by MathYouLike -
Connect A and C
Following total 3 corners in a triangle, we have :
\(\widehat{ADC}+\widehat{DCA}+\widehat{CAD}=180^0\) (\(\Delta ACD\))
\(\widehat{ACB}+\widehat{CBA}+\widehat{BAC}=180^0\) (\(\Delta ABC\))
=> \(\widehat{ADC}+\widehat{DCA}+\widehat{CAD}\) + \(\widehat{ACB}+\widehat{CBA}+\widehat{BAC}\) = 1800 + 1800 = 3600
<=> \(\widehat{ADC}+\widehat{DCB}+\widehat{CBA}+\widehat{BAD}=360^0\)
Flash Shit :3 selected this answer.