MathYouLike MathYouLike
  • Toggle menubar
  • Toggle fullscreen
  • Toggle Search
  •    Sign up
  • QUESTIONS
  • TAGS
  • USERS
  • BADGES
  • UNANSWERD
  • ASK A QUESTION
  • BLOG
...

Flash Shit :3

22/08/2017 at 12:21
Answers
2
Follow

Prove that :  In a quadrilateral, the sum of four angles is 360

Use the sum of three angles in triangle to prove it.

 

 




    List of answers
  • ...
    Dao Trong Luan 22/08/2017 at 12:38

    A B C D 1 2 1 2

    We have:

    \(\widehat{A_1}+\widehat{D_2}+\widehat{C}=180^o\)

    \(\widehat{A_2}+\widehat{D_1}+\widehat{B}=180^o\)

    \(\Rightarrow\widehat{A_1}+\widehat{D_2}+\widehat{C}+\widehat{A_2}+\widehat{D_1}+\widehat{B}=180^0+180^0\)

    => \(\widehat{A}+\widehat{B}+\widehat{C}+\widehat{D}=360^0\)

    So the sum of four angles in a quadrilateral is 360o

    Selected by MathYouLike
  • ...
    Kaya Renger Coordinator 22/08/2017 at 12:30

    A B C D

    Connect A and C 

    Following total 3 corners in a triangle, we have :

    \(\widehat{ADC}+\widehat{DCA}+\widehat{CAD}=180^0\)  (\(\Delta ACD\))

    \(\widehat{ACB}+\widehat{CBA}+\widehat{BAC}=180^0\)  (\(\Delta ABC\))

    => \(\widehat{ADC}+\widehat{DCA}+\widehat{CAD}\) + \(\widehat{ACB}+\widehat{CBA}+\widehat{BAC}\) = 1800 + 1800 = 3600

    <=> \(\widehat{ADC}+\widehat{DCB}+\widehat{CBA}+\widehat{BAD}=360^0\)

    Flash Shit :3 selected this answer.

Post your answer

Please help Flash Shit :3 to solve this problem!



Weekly ranking


© HCEM 10.1.29.225
Crafted with by HCEM