MathYouLike MathYouLike
  • Toggle menubar
  • Toggle fullscreen
  • Toggle Search
  •    Sign up
  • QUESTIONS
  • TAGS
  • USERS
  • BADGES
  • UNANSWERD
  • ASK A QUESTION
  • BLOG
...

steve jobs

18/03/2017 at 10:07
Answers
2
Follow

Rank \(2^{777}\),\(3^{555}\)and \(4^{444}\) in ascendung order in terms of their values.


Operation of Indices


    List of answers
  • ...
    mathlove 18/03/2017 at 10:52

    Put   \(a=2^{777},b=3^{555},c=4^{444}\). We have :

    \(a=2^{777}=\left(2^7\right)^{111}=128^{111},b=3^{555}=\left(3^5\right)^{111}=243^{111},c=4^{444}=\left(4^4\right)^{111}=256^{111}\Rightarrow a< b< c\).

    So:  \(2^{777}< 3^{555}< 4^{444}\).

    Selected by MathYouLike
  • ...
    FA KAKALOTS 06/02/2018 at 12:31

    Put   a=2777,b=3555,c=4444

    . We have :

    a=2777=(27)111=128111,b=3555=(35)111=243111,c=4444=(44)111=256111⇒a<b<c

    .

    So:  2777<3555<4444

    .


Post your answer

Please help steve jobs to solve this problem!



Weekly ranking


© HCEM 10.1.29.225
Crafted with by HCEM