steve jobs
18/03/2017 at 10:07-
mathlove 18/03/2017 at 10:52
Put \(a=2^{777},b=3^{555},c=4^{444}\). We have :
\(a=2^{777}=\left(2^7\right)^{111}=128^{111},b=3^{555}=\left(3^5\right)^{111}=243^{111},c=4^{444}=\left(4^4\right)^{111}=256^{111}\Rightarrow a< b< c\).
So: \(2^{777}< 3^{555}< 4^{444}\).
Selected by MathYouLike -
FA KAKALOTS 06/02/2018 at 12:31
Put a=2777,b=3555,c=4444
. We have :
a=2777=(27)111=128111,b=3555=(35)111=243111,c=4444=(44)111=256111⇒a<b<c
.
So: 2777<3555<4444
.