-
VTK-VangTrangKhuyet 19/08/2017 at 17:13
\(S=1+3+3^2+...+3^{50}\)
\(\Rightarrow3S=3+3^2+3^3+...+3^{50}+3^{51}\)
\(\Rightarrow3S-S=2S=\left(3+3^2+3^3+...+3^{50}+3^{51}\right)-\left(1+3+3^2+...+3^{50}\right)=3^{51}-1\)
So \(S=\dfrac{3^{51}-1}{2}\)
Selected by MathYouLike -
Help you solve math 19/08/2017 at 17:12
Ta post S
S = 1+3(1+3^2+...+3^49)=1+3(S-3^50)
=>S=1+3S-3^51
=>2S=3^51-1=>S=\(\dfrac{3^{51-1}}{2}\)
longia selected this answer. -
nguyển văn hải 20/08/2017 at 08:24
=1+3+3^2+...+3^50
⇒3S=3+3^2+3^3+...+3^50+3^51
⇒3S−S=2S=(3+3^2+3^3+...+3^50+3^51)−(1+3+3^2+...+3^50)=3^51−1
So S=\(\dfrac{3^{51}-1}{2}\)
-
Ngân Hà 19/08/2017 at 20:20
\(S=1+3+3^2+...+3^{50}\)
\(\Rightarrow3S=3+3^2+3^3+...+3^{51}\)
\(\Rightarrow3S-S=2S=3^{51}-1\)
So \(S=\dfrac{3^{51}-1}{2}\)