MathYouLike MathYouLike
  • Toggle menubar
  • Toggle fullscreen
  • Toggle Search
  •    Sign up
  • QUESTIONS
  • TAGS
  • USERS
  • BADGES
  • UNANSWERD
  • ASK A QUESTION
  • BLOG
...

longia

19/08/2017 at 17:05
Answers
4
Follow

S=1+3+3^2+..+3^50=?




    List of answers
  • ...
    VTK-VangTrangKhuyet 19/08/2017 at 17:13

    \(S=1+3+3^2+...+3^{50}\)

    \(\Rightarrow3S=3+3^2+3^3+...+3^{50}+3^{51}\)

    \(\Rightarrow3S-S=2S=\left(3+3^2+3^3+...+3^{50}+3^{51}\right)-\left(1+3+3^2+...+3^{50}\right)=3^{51}-1\)

    So \(S=\dfrac{3^{51}-1}{2}\)

    Selected by MathYouLike
  • ...
    Help you solve math 19/08/2017 at 17:12

    Ta post S

    S = 1+3(1+3^2+...+3^49)=1+3(S-3^50)

    =>S=1+3S-3^51

    =>2S=3^51-1=>S=\(\dfrac{3^{51-1}}{2}\)

    longia selected this answer.
  • ...
    nguyển văn hải 20/08/2017 at 08:24

    =1+3+3^2+...+3^50

    ⇒3S=3+3^2+3^3+...+3^50+3^51

    ⇒3S−S=2S=(3+3^2+3^3+...+3^50+3^51)−(1+3+3^2+...+3^50)=3^51−1

    So S=\(\dfrac{3^{51}-1}{2}\)

  • ...
    Ngân Hà 19/08/2017 at 20:20

    \(S=1+3+3^2+...+3^{50}\)

    \(\Rightarrow3S=3+3^2+3^3+...+3^{51}\)

    \(\Rightarrow3S-S=2S=3^{51}-1\)

    So \(S=\dfrac{3^{51}-1}{2}\)


Post your answer

Please help longia to solve this problem!



Weekly ranking


© HCEM 10.1.29.225
Crafted with by HCEM