MathYouLike MathYouLike
  • Toggle menubar
  • Toggle fullscreen
  • Toggle Search
  •    Sign up
  • QUESTIONS
  • TAGS
  • USERS
  • BADGES
  • UNANSWERD
  • ASK A QUESTION
  • BLOG
...

Dao Trong Luan

19/08/2017 at 10:47
Answers
2
Follow

Given equation:

\(f\left(x\right)=ax^2+bx+c\)

Prove that:

\(f\left(-2\right)\cdot f\left(3\right)\le0\) know:

\(13a+b+2c=0\)

Help me fast!




    List of answers
  • ...
    Phan Thanh Tinh Coordinator 19/08/2017 at 11:00

    The conclusion should be \(f\left(-2\right).f\left(3\right)\le0\)

    We solve it as shown :

    \(f\left(-2\right)=4a-2b+c\)

    \(f\left(3\right)=9a+3b+c\)

    \(f\left(-2\right)+f\left(3\right)=13a+b+2c=0\)

    So, the values of f(-2) and f(3) are 2 opposite numbers. Hence, \(f\left(-2\right).f\left(3\right)\le0\)

    Dao Trong Luan selected this answer.
  • ...
    Ngô Tấn Đạt 20/08/2017 at 12:06

    bạn Phan Thanh Tinh giải đúng nhưng mình thấy còn thiếu !! 

    Ta có  : \(\left\{{}\begin{matrix}f\left(-2\right)=4a-2b+c\\f\left(3\right)=9a+3b+c\end{matrix}\right.\\ \Rightarrow f\left(-2\right)+f\left(3\right)=13a+b+2c=0\)

    Nếu 1 trong hai số hoặc cả hai số bằng 0 thì f(-2).f(3)=0

    Nếu cả hai số khác 0 thì hai f(-2_ và f(3) trái dấu => f(-2).f(3)<0 

    => đpcm 


Post your answer

Please help Dao Trong Luan to solve this problem!



Weekly ranking


© HCEM 10.1.29.225
Crafted with by HCEM