MathYouLike MathYouLike
  • Toggle menubar
  • Toggle fullscreen
  • Toggle Search
  •    Sign up
  • QUESTIONS
  • TAGS
  • USERS
  • BADGES
  • UNANSWERD
  • ASK A QUESTION
  • BLOG
...

phan gia huy

17/08/2017 at 21:57
Answers
2
Follow

Chứng minh các bất đẳng thức:

a) (a + b)2 ≤ 2(a2 + b2)

b) (a + b + c)2 ≤ 3(a2 + b2 + c2)

c) (a1 + a2 + ….. + an)2 ≤ n(a12 + a22 + ….. + an2).




    List of answers
  • ...
    Kaya Renger Coordinator 17/08/2017 at 22:19

    Perhaps Bunyakovsky's inequality :v , Sure right =)))

    We have :

    \(n.\left(a_1^2+a_2^2+.....+a_n^2\right)=\left(1+1+1+.......+1\right).\left(a_1^2+a_2^2.......+a_n^2\right)\)

                                                    ........ n number 1..........

    \(L.H.S\ge\left(1.a_1+1.a_2+.....+1.a_n\right)^2=\left(a_1+a_2+.....+a_n\right)^2\)

    Done , ok !

    Selected by MathYouLike
  • ...
    Kaya Renger Coordinator 17/08/2017 at 22:04

    a) \(\left(a+b\right)^2\le2\left(a^2+b^2\right)\)

    \(a^2+2ab+b^2\le2a^2+2b^2\)

    \(a^2-2ab+b^2\ge0\)

    \(\left(a-b\right)^2\ge0\)

    b) \(\left(a+b+c\right)^2\le3\left(a^2+b^2+c^2\right)\)

    \(a^2+b^2+c^2+2ab+2bc+2ca\le3a^2+3b^2+3c^2\)

    \(2a^2+2b^2+2c^2-2ab-2bc-2ca\ge0\)

    \(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)


Post your answer

Please help phan gia huy to solve this problem!



Weekly ranking


© HCEM 10.1.29.225
Crafted with by HCEM