Phan Huy Toàn
16/08/2017 at 15:44-
Apply Cauchy inequality , we have :
\(P=2x+y+\dfrac{30}{x}+\dfrac{5}{y}=\dfrac{4}{5}\left(x+y\right)+\left(\dfrac{6x}{5}+\dfrac{30}{x}\right)+\left(\dfrac{y}{5}+\dfrac{5}{y}\right)\)
\(P\ge\dfrac{4}{5}.10+2.\sqrt{\dfrac{6x}{5}.\dfrac{30}{x}}+2.\sqrt{\dfrac{y}{5}.\dfrac{5}{y}}=8+6+2=16\)
So \(Min_P=16\)
<=> x = y = 5
Selected by MathYouLike -
That is my question ok : https://e-learning.codienhanoi.edu.vn/questions/1902.html
Searching before asking , ok cheater :V
-
Help you solve math 16/08/2017 at 15:54
P=4/5(x+y)+(6/5x+30/x)+(y/5+5/y)≥45.10+2√6/5x.30/x+2√y/5.5/y
=8+12+2=22=8+12+2=22
minP=22⇔x=y=5⇔x=y=5