MathYouLike MathYouLike
  • Toggle menubar
  • Toggle fullscreen
  • Toggle Search
  •    Sign up
  • QUESTIONS
  • TAGS
  • USERS
  • BADGES
  • UNANSWERD
  • ASK A QUESTION
  • BLOG
...

Kaya Renger Coordinator

15/08/2017 at 14:13
Answers
2
Follow

Given two positive real numbers x,y so that \(x+y\ge10\) 

Find the smallest value of P , know P = \(2x+y+\dfrac{30}{x}+\dfrac{5}{y}\)




    List of answers
  • ...
    Đức Lê Minh 15/08/2017 at 19:53

    Use Cauchy:

    P\(=\)\(\dfrac{4}{5}\left(x+y\right)+\left(\dfrac{6}{5}x+\dfrac{30}{x}\right)+\left(\dfrac{y}{5}+\dfrac{5}{y}\right)\)\(\ge\dfrac{4}{5}.10+2\sqrt{\dfrac{6}{5}x.\dfrac{30}{x}}+2\sqrt{\dfrac{y}{5}.\dfrac{5}{y}}\)

    \(=8+12+2=22\)

    minP=22\(\Leftrightarrow x=y=5\)

    Selected by MathYouLike
  • ...
    Dinh Hung 15/08/2017 at 15:48

     \(P=2x+y+\dfrac{30}{x}+\dfrac{5}{y}=\left(\dfrac{4}{5}x+\dfrac{6}{5}x\right)+\left(\dfrac{4}{5}y+\dfrac{1}{5}y\right)+\dfrac{30}{x}+\dfrac{5}{y}\)

    \(=\left(\dfrac{4}{5}x+\dfrac{4}{5}y\right)+\left(\dfrac{6x}{5}+\dfrac{30}{x}\right)+\left(\dfrac{y}{5}+\dfrac{5}{y}\right)\)

    \(\dfrac{4}{5}\left(x+y\right)+\left(\dfrac{6x}{5}+\dfrac{30}{x}\right)+\left(\dfrac{y}{5}+\dfrac{5}{y}\right)\)

    Because x; y is positive we have :

    \(\dfrac{6x}{5}+\dfrac{30}{x}\ge2\sqrt{\dfrac{6x}{5}.\dfrac{30}{x}}=2\sqrt{36}=12\) (Cauchy)

    \(\dfrac{y}{5}+\dfrac{5}{y}\ge2\sqrt{\dfrac{y}{5}.\dfrac{5}{y}}=2\)(Caychy)

    \(\Rightarrow\left(\dfrac{6x}{5}+\dfrac{30}{x}\right)+\left(\dfrac{y}{5}+\dfrac{5}{y}\right)\ge14\)

    We have \(x+y\ge10\Rightarrow\dfrac{4}{5}\left(x+y\right)\ge\dfrac{4}{5}.10=8\)

    \(\Rightarrow\dfrac{4}{5}\left(x+y\right)+\left(\dfrac{6x}{5}+\dfrac{30}{x}\right)+\left(\dfrac{y}{5}+\dfrac{5}{y}\right)\ge14+8=22\)

    The equation occurs when \(x=y=5\)

    \(P_{min}=22\Leftrightarrow x=y=5\)


Post your answer

Please help Kaya Renger to solve this problem!



Weekly ranking


© HCEM 10.1.29.225
Crafted with by HCEM