Flash Shit :3
14/08/2017 at 14:16-
Denote \(C=\dfrac{a}{a+b+c}+\dfrac{b}{b+c+d}+\dfrac{c}{c+d+a}+\dfrac{d}{d+a+b}\)
+) We have :
\(\dfrac{a}{a+b+c}>\dfrac{a}{a+b+c+d}\)
\(\dfrac{b}{b+c+d}>\dfrac{b}{a+b+c+d}\)
\(\dfrac{c}{c+d+a}>\dfrac{c}{a+b+c+d}\)
\(\dfrac{d}{d+a+b}>\dfrac{d}{a+b+c+d}\)
So \(C>\dfrac{a}{a+b+c+d}+\dfrac{b}{a+b+c+d}+\dfrac{c}{a+b+c+d}+\dfrac{d}{a+b+c+d}=\dfrac{a+b+c+d}{a+b+c+d}=1\)
+) We have this too :v
\(\dfrac{a}{a+b+c}< \dfrac{a}{a+c}\)
\(\dfrac{b}{b+c+d}< \dfrac{b}{b+d}\)
\(\dfrac{c}{c+d+a}< \dfrac{c}{c+a}\)
\(\dfrac{d}{d+a+b}< \dfrac{d}{b+d}\)
Plus equality to equality :
\(\Rightarrow C< \dfrac{a}{a+c}+\dfrac{b}{b+d}+\dfrac{c}{a+c}+\dfrac{d}{b+d}=\dfrac{a+c}{a+c}+\dfrac{b+d}{b+d}=2\)
Finally , \(1< C< 2\) :)
Selected by MathYouLike -
Faded 28/01/2018 at 21:30
Denote C=aa+b+c+bb+c+d+cc+d+a+dd+a+b
+) We have :
aa+b+c>aa+b+c+d
bb+c+d>ba+b+c+d
cc+d+a>ca+b+c+d
dd+a+b>da+b+c+d
So C>aa+b+c+d+ba+b+c+d+ca+b+c+d+da+b+c+d=a+b+c+da+b+c+d=1
+) We have this too :v
aa+b+c<aa+c
bb+c+d<bb+d
cc+d+a<cc+a
dd+a+b<db+d
Plus equality to equality :
⇒C<aa+c+bb+d+ca+c+db+d=a+ca+c+b+db+d=2
Finally , 1<C<2
:)