MathYouLike MathYouLike
  • Toggle menubar
  • Toggle fullscreen
  • Toggle Search
  •    Sign up
  • QUESTIONS
  • TAGS
  • USERS
  • BADGES
  • UNANSWERD
  • ASK A QUESTION
  • BLOG
...

steve jobs

17/03/2017 at 11:00
Answers
2
Follow

The corresponding values of a,b and c are shown in the figure below.

Simplify |b - a| + |b + c| - |c| for a > b > c.

> | | | | c b 0 a


absolute value


    List of answers
  • ...
    Phan Thanh Tinh Coordinator 23/03/2017 at 19:15

    We have :

    \(\left\{{}\begin{matrix}b< a\\b< 0\\c< 0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}b-a< 0\\b+c< 0\\c< 0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}\left|b-a\right|=a-b\\\left|b+c\right|=-b-c\\\left|c\right|=-c\end{matrix}\right.\)

    => |b - a| + |b + c| + |c| = a - b - b - c - c = a - 2b - 2c

    Selected by MathYouLike
  • ...
    ¤« 08/04/2018 at 15:12

    We have :

    ⎧⎩⎨⎪⎪b<ab<0c<0⇒⎧⎩⎨⎪⎪b−a<0b+c<0c<0

    ⇒⎧⎩⎨⎪⎪|b−a|=a−b|b+c|=−b−c|c|=−c

    => |b - a| + |b + c| + |c| = a - b - b - c - c = a - 2b - 2c


Post your answer

Please help steve jobs to solve this problem!



Weekly ranking


© HCEM 10.1.29.225
Crafted with by HCEM