MathYouLike MathYouLike
  • Toggle menubar
  • Toggle fullscreen
  • Toggle Search
  •    Sign up
  • QUESTIONS
  • TAGS
  • USERS
  • BADGES
  • UNANSWERD
  • ASK A QUESTION
  • BLOG
...

steve jobs

17/03/2017 at 10:51
Answers
3
Follow

Find the smallest value of |m - 2| + |m + 3|.


absolute value


    List of answers
  • ...
    Nguyễn Huy Tú 17/03/2017 at 12:55

    Put \(A=\left|m-2\right|+\left|m+3\right|\)

    We have: \(A=\left|m-2\right|+\left|m+3\right|=\left|2-m\right|+\left|m+3\right|\)

    Apply the inequality \(\left|a\right|+\left|b\right|\ge\left|a\right|+\left|b\right|\), we have:

    \(A\ge\left|2-m+m+3\right|=\left|5\right|=5\)

    The "=" sign occurs when \(\left\{{}\begin{matrix}2-m\ge0\\m+3\ge0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}m\le2\\m\ge-3\end{matrix}\right.\Rightarrow-3\le m\le2\)

    So \(MIN_A=5\) when \(-3\le m\le2\)

    Selected by MathYouLike
  • ...
    ¤« 08/04/2018 at 15:13

    Put A=|m−2|+|m+3|

    We have: A=|m−2|+|m+3|=|2−m|+|m+3|

    Apply the inequality |a|+|b|≥|a|+|b|

    , we have:

    A≥|2−m+m+3|=|5|=5

    The "=" sign occurs when {2−m≥0m+3≥0⇒{m≤2m≥−3⇒−3≤m≤2

    So MINA=5

     when −3≤m≤2

    Find minimize |m−2|+|m+3|

     ?

    By inequality |a|+|b|≥|a+b|

     we have:

    |m−2|+|m+3|=|2−m|+|m+3|

    ≥|2−m+m+3|=5

    Done !

  • ...
    Ace Legona 17/03/2017 at 11:52

    Find minimize \(|m-2|+|m+3|\) ?

    By inequality \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) we have:

    \(\left|m-2\right|+\left|m+3\right|=\left|2-m\right|+\left|m+3\right|\)

    \(\ge\left|2-m+m+3\right|=5\)

    Done !


Post your answer

Please help steve jobs to solve this problem!



Weekly ranking


© HCEM 10.1.29.225
Crafted with by HCEM