Chhi Phuong
10/08/2017 at 21:54-
a) \(F\left(x\right)+G\left(x\right)+H\left(x\right)=x^2+4x+5\)
\(2F\left(x\right)-\left[G\left(x\right)+H\left(x\right)\right]\)
\(=-2x^4-6x^3+2x^2-4x+10-\left(x^4+3x^3+6x\right)\)
\(=-3x^4-9x^3+2x^2-10x+10\)
b) \(F\left(-1\right)=-1+3+1+2+5=10\)
\(G\left(-\dfrac{1}{2}\right)=\dfrac{3}{8}-\dfrac{1}{8}-\dfrac{1}{2}+\dfrac{3}{2}-3=-\dfrac{7}{4}\)
\(H\left(2\right)=-80+16+8+18+3=-35\)
c) \(F\left(x\right)+G\left(x\right)+H\left(x\right)=x^2+4x+5=x^2+4x+4+1\)
\(=\left(x+2\right)^2+1>0\)
d) \(x^2+4x+5=1\Leftrightarrow\left(x+2\right)^2+1=1\Leftrightarrow x=-2\)