Nguyễn Thành Lợi
09/08/2017 at 09:37-
a) \(B=\left(\dfrac{\sqrt{x}}{\sqrt{x}+4}+\dfrac{4}{\sqrt{x}-4}\right):\dfrac{x+16}{\sqrt{x}+2}\)
\(B=\dfrac{\sqrt{x}\left(\sqrt{x}-4\right)+4\left(\sqrt{x}+4\right)}{\left(\sqrt{x}+4\right)\left(\sqrt{x}-4\right)}.\dfrac{\sqrt{x}+2}{x+16}\)
\(B=\dfrac{x-4\sqrt{x}+4\sqrt{x}+16}{x-16}.\dfrac{\sqrt{x}+2}{x+16}\)
\(B=\dfrac{\left(x+16\right).\left(\sqrt{x}+2\right)}{\left(x-16\right)\left(x+16\right)}=\dfrac{\sqrt{x}+2}{x-16}\)
b) B.(A - 1) = \(\dfrac{\sqrt{x}+2}{x-16}.\left(\dfrac{\sqrt{x}+4}{\sqrt{x}+2}-1\right)\)
\(=\dfrac{\sqrt{x}+2}{x-16}.\dfrac{2}{\sqrt{x}+2}=\dfrac{2}{x-16}\)
B(A - 1) is interger number
<=> 2 \(⋮\) x - 16
<=> x - 16 \(\in\) {1 ; -1 ; 2 ; -2}
We have this table :
x - 16 1 -1 2 -2 x 17 15 18 14 So, x = {14 ; 15 ; 17 ; 18}
Selected by MathYouLike