MathYouLike MathYouLike
  • Toggle menubar
  • Toggle fullscreen
  • Toggle Search
  •    Sign up
  • QUESTIONS
  • TAGS
  • USERS
  • BADGES
  • UNANSWERD
  • ASK A QUESTION
  • BLOG
...

Nguyễn Thành Lợi

09/08/2017 at 09:28
Answers
1
Follow

Give :

\(P=\left(\dfrac{x+3\sqrt{x}+2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}-\dfrac{x+\sqrt{x}}{x-1}\right):\left(\dfrac{1}{\sqrt{x}+1}+\dfrac{1}{\sqrt{x}-1}\right)\)

a) Shorten P ?

b) With which x we have \(\dfrac{1}{P}-\dfrac{\sqrt{x}+1}{8}\ge1\) ?




    List of answers
  • ...
    WhySoSerious 09/08/2017 at 09:34

    a) Let \(\sqrt{x}=a\Rightarrow x=a^2\)

    \(\Rightarrow P=\left[\dfrac{a^2+3a+2}{\left(a+2\right)\left(a-1\right)}-\dfrac{a^2+a}{a^2-1}\right]:\left(\dfrac{1}{a+1}+\dfrac{1}{a-1}\right)\)

    Compact \(P=\dfrac{\sqrt{x}+1}{2\sqrt{x}}\)

    b) \(\dfrac{1}{P}-\dfrac{\sqrt{x}+1}{8}\ge1\Leftrightarrow\dfrac{2\sqrt{x}}{\sqrt{x}+1}-\dfrac{\sqrt{x}+1}{8}\ge1\)

    \(\Leftrightarrow\dfrac{16\sqrt{x}-\left(\sqrt{x}+1\right)^2}{8\left(\sqrt{x}+1\right)}\ge1\)

    \(\Leftrightarrow16\sqrt{x}-\left(\sqrt{x}+1\right)^2\ge8\left(\sqrt{x}+1\right)\) (cause \(8\left(\sqrt{x}+1\right)>0\))

    \(\Leftrightarrow\left(\sqrt{x}-3\right)^2\le0\Leftrightarrow x=9\)

    Selected by MathYouLike

Post your answer

Please help Nguyễn Thành Lợi to solve this problem!



Weekly ranking


© HCEM 10.1.29.225
Crafted with by HCEM