MathYouLike MathYouLike
  • Toggle menubar
  • Toggle fullscreen
  • Toggle Search
  •    Sign up
  • QUESTIONS
  • TAGS
  • USERS
  • BADGES
  • UNANSWERD
  • ASK A QUESTION
  • BLOG
...

Summer Clouds moderators

08/08/2017 at 08:57
Answers
1
Follow

The measure of an interior angle of a regular polygon is eight times the measure of one of its exterior angles. How many sides does the polygon have?




    List of answers
  • ...
    Phan Thanh Tinh Coordinator 08/08/2017 at 09:12

    Let n be the number of sides of the regular polygon\(\left(n\in N;n\ge3\right)\),then the measure of each interior angle is \(\dfrac{180\left(n-2\right)}{n}\) and the measure of each exterior angle is \(180-\dfrac{180\left(n-2\right)}{n}\).We have :

    \(\dfrac{180\left(n-2\right)}{n}=8\left(180-\dfrac{180\left(n-2\right)}{n}\right)\)

    \(\Leftrightarrow\dfrac{180\left(n-2\right)}{n}-1440+8.\dfrac{180\left(n-2\right)}{n}=0\)

    \(\Leftrightarrow9.\dfrac{180\left(n-2\right)}{n}=1440\Leftrightarrow\dfrac{9\left(n-2\right)}{n}=8\Rightarrow9n-18=8n\Leftrightarrow n=18\)

    So,the polygon has 18 sides

    Selected by MathYouLike

Post your answer

Please help Summer Clouds to solve this problem!



Weekly ranking


© HCEM 10.1.29.225
Crafted with by HCEM