Behind You
07/08/2017 at 11:59-
WhySoSerious 07/08/2017 at 13:42
Shorten right side : \(\sqrt[3]{45+29\sqrt{2}}-\sqrt[3]{40+14\sqrt{2}}\)
\(=\sqrt[3]{2\sqrt{2}+3\left(\sqrt{2}\right)^2\cdot3+3\sqrt{2}\cdot9+27}-\sqrt[3]{2\sqrt{2}+3\left(\sqrt{2}\right)^2\cdot2+3\sqrt{2}\cdot4+8}\)
\(=\sqrt[3]{\left(\sqrt{2}+3\right)^3}-\sqrt[3]{\left(\sqrt{2}+2\right)^3}=\sqrt{2}+3-\left(\sqrt{2}+2\right)=1\)
So the expression is equal : \(\sqrt{2x^2+1}+\sqrt{x^2-3x+\dfrac{17}{2}}=1\)
\(\Leftrightarrow\sqrt{2x^2+1}+\sqrt{\left(x-\dfrac{3}{2}\right)^2+\dfrac{25}{4}}=1\)
The expression has no solution cause the left side \(>\sqrt{2x^2+1}\ge1\).
Behind You selected this answer. -
Behind You 08/08/2017 at 14:51
Thank you !