MathYouLike MathYouLike
  • Toggle menubar
  • Toggle fullscreen
  • Toggle Search
  •    Sign up
  • QUESTIONS
  • TAGS
  • USERS
  • BADGES
  • UNANSWERD
  • ASK A QUESTION
  • BLOG
...

Behind You

07/08/2017 at 11:58
Answers
1
Follow

Solve : \(\sqrt{3x^2+6x+7}+\sqrt{5x^2+10x+14}=4-2x-x^2\)




    List of answers
  • ...
    WhySoSerious 07/08/2017 at 12:18

    This problem is easy we start : 

    Note : \(3x^2+6x+7=3\left(x^2+2x+1\right)+4=3\left(x+1\right)^2+4\Rightarrow\sqrt{3x^2+6x+7}\ge2\)

    \(5x^2+10x+14=5\left(x^2+2x+1\right)+9=5\left(x+1\right)^2+9\Rightarrow\sqrt{5x^2+10x+14}\ge3\)

    So the left side of the expression \(\sqrt{3x^2+6x+7}+\sqrt{5x^2+10x+14}\ge5\)

    Come to the right side : \(4-2x-x^2=5-\left(x^2+2x+1\right)=5-\left(x+1\right)^2\le5\)

    The thread \(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{3x^2+6x+7}+\sqrt{5x^2+10x+14}=5\\4-2x-x^2=5\end{matrix}\right.\Leftrightarrow x=-1\)

    So the expression has the only solution x = -1.

    Behind You selected this answer.

Post your answer

Please help Behind You to solve this problem!



Weekly ranking


© HCEM 10.1.29.225
Crafted with by HCEM