MathYouLike MathYouLike
  • Toggle menubar
  • Toggle fullscreen
  • Toggle Search
  •    Sign up
  • QUESTIONS
  • TAGS
  • USERS
  • BADGES
  • UNANSWERD
  • ASK A QUESTION
  • BLOG
...

Behind You

07/08/2017 at 11:57
Answers
1
Follow

Solve :

\(\dfrac{6x-3}{\sqrt{x}-\sqrt{1-x}}=3+2\sqrt{x-x^2}\)




    List of answers
  • ...
    WhySoSerious 07/08/2017 at 12:11

    Condition : \(0\le x\le1;x\ne\dfrac{1}{2}\)

    \(\Leftrightarrow\dfrac{\left(6x-3\right)\left(\sqrt{x}+\sqrt{1-x}\right)}{2x-1}=3+2\sqrt{x-x^2}\)

    \(\Leftrightarrow3\cdot\left(\sqrt{x}+\sqrt{1-x}\right)=x+2\sqrt{x\left(1-x\right)}+\left(1-x\right)+2\)

    \(\Leftrightarrow\left(\sqrt{x}+\sqrt{1-x}\right)^2-3\left(\sqrt{x}+\sqrt{1-x}\right)+2=0\)

    \(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}+\sqrt{1-x}=1\\\sqrt{x}+\sqrt{1-x}=2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2\sqrt{x\left(1-x\right)}=0\\4x^2-4x+9=0\left(no-solution\right)\end{matrix}\right.\)

    \(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\) So the expression has two solutions : x = 0; x = 1.

    Behind You selected this answer.

Post your answer

Please help Behind You to solve this problem!



Weekly ranking


© HCEM 10.1.29.225
Crafted with by HCEM