MathYouLike MathYouLike
  • Toggle menubar
  • Toggle fullscreen
  • Toggle Search
  •    Sign up
  • QUESTIONS
  • TAGS
  • USERS
  • BADGES
  • UNANSWERD
  • ASK A QUESTION
  • BLOG
...

Min Hoang moderators

16/03/2017 at 11:05
Answers
3
Follow

A circle of radius 3 is inscribed in the pictured quadrant of a circle. Find the area of the shaded section. 


area


    List of answers
  • ...
    mathlove 16/03/2017 at 18:29

    The circle of radius 3 have an area \(9\pi\). We sign r as the radius of  the pictured quadrant of the done cỉcle, then

    \(r=3\sqrt{2}+3\). Put x is the area to calculate, we have  

                   \(\dfrac{1}{4}\pi r^2=2x+\pi.3^2+\left(3^2-\dfrac{1}{4}.\pi.3^2\right)=2x+9\left(1+\dfrac{3\pi}{4}\right)\)

          ​ ​\(\Leftrightarrow\dfrac{\pi}{4}\left(3\sqrt{2}+3\right)^2=2x+9\left(1+\dfrac{3\pi}{4}\right)\Leftrightarrow2x=\dfrac{\left(27+18\sqrt{2}\right)\pi}{4}-\dfrac{36+27\pi}{4}\)

           \(\Leftrightarrow x=\dfrac{9\sqrt{2}\pi-36}{4}\)

    Selected by MathYouLike
  • ...
    mathlove 17/03/2017 at 10:45

    x x y

    We have    \(y=3^2-\left(\dfrac{1}{4}\pi3^2\right)\) and  \(r-3=3\sqrt{2}\Rightarrow r=3+3\sqrt{2}\).

    Selected by MathYouLike
  • ...
    FA KAKALOTS 28/01/2018 at 22:09

    The circle of radius 3 have an area 9π

    . We sign r as the radius of  the pictured quadrant of the done cỉcle, then

    r=3√2+3

    . Put x is the area to calculate, we have  

                   14πr2=2x+π.32+(32−14.π.32)=2x+9(1+3π4)

          ​ ​⇔π4(3√2+3)2=2x+9(1+3π4)⇔2x=(27+18√2)π4−36+27π4

           ⇔x=9√2π−364


Post your answer

Please help Min Hoang to solve this problem!



Weekly ranking


© HCEM 10.1.29.225
Crafted with by HCEM