MathYouLike MathYouLike
  • Toggle menubar
  • Toggle fullscreen
  • Toggle Search
  •    Sign up
  • QUESTIONS
  • TAGS
  • USERS
  • BADGES
  • UNANSWERD
  • ASK A QUESTION
  • BLOG
...

Pham Luong Minh

03/08/2017 at 21:13
Answers
1
Follow

Give :

\(P=\dfrac{x^7+x^6+x^5+x^4+x^3+x^2+x+1}{x^4-1}\)

a) Compact P.

b) Calculate P when x = 2 ?




    List of answers
  • ...
    CTC 03/08/2017 at 21:23

    a)  We have 2 ways to compact :

    C1 : \(P=\dfrac{x^6\left(x+1\right)+x^4\left(x+1\right)+x^2\left(x+1\right)+x+1}{x^4-1}\)

    \(=\dfrac{\left(x+1\right)\left(x^6+x^4+x^2+1\right)}{\left(x^2-1\right)\left(x^2+1\right)}=\dfrac{\left(x+1\right)\left[x^4\left(x^2+1\right)+x^2+1\right]}{\left(x-1\right)\left(x+1\right)\left(x^2+1\right)}\)

    \(=\dfrac{\left(x^2+1\right)\left(x^4+1\right)}{\left(x-1\right)\left(x^2+1\right)}=\dfrac{x^4+1}{x-1}\)

    C2 : Multiply numerator and denominator with x-1 we have :

    \(P=\dfrac{\left(x-1\right)\left(x^7+x^6+x^5+x^4+x^3+x^2+x+1\right)}{\left(x-1\right)\left(x^4-1\right)}\)

    \(=\dfrac{x^8-1}{\left(x-1\right)\left(x^4-1\right)}=\dfrac{\left(x^4-1\right)\left(x^4+1\right)}{\left(x-1\right)\left(x^4-1\right)}=\dfrac{x^4+1}{x-1}\)

    b) When x = 2 we have \(P=\dfrac{2^4+1}{2-1}=\dfrac{17}{1}=17\)

    So when x = 2 -> P = 17.

    Selected by MathYouLike

Post your answer

Please help Pham Luong Minh to solve this problem!



Weekly ranking


© HCEM 10.1.29.225
Crafted with by HCEM